1
|
Guo M, Ye YD, Cai JP, Xu HT, Wei W, Sun JY, Wang CY, Wang CB, Li YH, Zhu B. PEG-SeNPs as therapeutic agents inhibiting apoptosis and inflammation of cells infected with H1N1 influenza A virus. Sci Rep 2024; 14:21318. [PMID: 39266597 PMCID: PMC11393426 DOI: 10.1038/s41598-024-71486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1β, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.
Collapse
Affiliation(s)
- Min Guo
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Yu-Dan Ye
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Tong Xu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Wei Wei
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jia-Yu Sun
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chen-Yang Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chang-Bing Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Ying-Hua Li
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| | - Bing Zhu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| |
Collapse
|
2
|
Aikelamu K, Bai J, Zhang Q, Huang J, Wang M, Zhong C. Self-Assembled Nanoparticles of Silicon (IV)-NO Donor Phthalocyanine Conjugate for Tumor Photodynamic Therapy in Red Light. Pharmaceutics 2024; 16:1166. [PMID: 39339203 PMCID: PMC11435187 DOI: 10.3390/pharmaceutics16091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The combination of photodynamic therapy (PDT) and pneumatotherapy is emerging as one of the most effective strategies for increasing cancer treatment efficacy while minimizing side effects. Photodynamic forces affect nitric oxide (NO) levels as activated photosensitizers produce NO, and NO levels in the tumor and microenvironment directly impact tumor cell responsiveness to PDT. In this paper, 3-benzenesulfonyl-4-(1-hydroxy ether)-1,2,5-oxadiazole-2-oxide NO donor-silicon phthalocyanine coupling (SiPc-NO) was designed and prepared into self-assembled nanoparticles (SiPc-NO@NPs) by precipitation method. By further introducing arginyl-glycyl-aspartic acid (RGD) on the surface of nanoparticles, NO-photosensitizer delivery systems (SiPc-NO@RGD NPs) with photo-responsive and tumor-targeting properties were finally prepared and preliminarily evaluated in terms of their formulation properties, NO release, and photosensitizing effects. Furthermore, high reactive oxygen species (ROS) generation efficiency and high PDT efficiency in two breast cancer cell lines (human MCF-7 and mouse 4T1) under irradiation were also demonstrated. The novel SiPc-NO@RGD NPs show great potential for application in NO delivery and two-photon bioimaging-guided photodynamic tumor therapy.
Collapse
Affiliation(s)
- Kadireya Aikelamu
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jingya Bai
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Qian Zhang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jiamin Huang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Mei Wang
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Chunhong Zhong
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Ministry of Education, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
3
|
Yang B, Liu B, Gao Y, Wei J, Li G, Zhang H, Wang L, Hou Z. PEG-crosslinked O-carboxymethyl chitosan films with degradability and antibacterial activity for food packaging. Sci Rep 2024; 14:10825. [PMID: 38734808 PMCID: PMC11088648 DOI: 10.1038/s41598-024-61642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Baoliang Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China.
| | - Yuanyuan Gao
- Taian Yingxiongshan Middle School, Taian, Shandong, China
| | - Junjie Wei
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Gang Li
- Shandong Tianming Pharmaceutical Co, Ltd., Jinan, Shandong, China
| | - Hui Zhang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Linlin Wang
- Key Laboratory of Public Security Management Technology in Universities of Shandong, School of Intelligence Engineering, Shandong Management University, Jinan, Shandong, China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
6
|
Vasicek TW, Guillermo S, Swofford DR, Durchman J, Jenkins SV. β-Glucosidase Immobilized on Magnetic Nanoparticles: Controlling Biomolecule Footprint and Particle Functional Group Density to Navigate the Activity-Stability Tradeoff. ACS APPLIED BIO MATERIALS 2022; 5:5347-5355. [PMID: 36331934 DOI: 10.1021/acsabm.2c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present work, the immobilized footprint of β-glucosidase (BGL) on silica-coated iron oxide was explored to produce reusable catalysts with flexible active sites for high activity and heightened storage stability. Synthesized iron oxide particles were coated with silica and functionalized with various densities of (3-aminopropyl)triethoxysilane (APTES) to obtain particles with amine densities ranging from 0 to 3 × 10-5 mol/g particle. The amine-modified particles were activated with glutaraldehyde, and subsequently, BGL was immobilized using either a 0.1 or 1 mg/mL enzyme solution to produce biomolecules with a large or small footprint on the particle surface. The initial activity, activity for subsequent hydrolysis cycles, activity after extended storage, and biomolecule footprint were studied as a function of APTES density and concentration of enzyme used for immobilization. At high immobilization amounts, the specific activity and footprint were reduced, but the immobilized biomolecules were stable during storage. However, at low enzyme immobilizations, the activity of the enzymes was retained, the immobilized enzymes adopted large footprints, and the storage stability increased with APTES density relative to the free enzyme. These results highlight how controlling both the protein load and functional group density can yield immobilized enzymes possessing high activity, which are stable during storage.
Collapse
Affiliation(s)
- Thaddeus W Vasicek
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Sylvester Guillermo
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Danny R Swofford
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Jeremy Durchman
- Department of Physical Science, University of Arkansas Fort Smith, Fort Smith, Arkansas72913, United States
| | - Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas72205, United States
| |
Collapse
|
7
|
Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. Int J Mol Sci 2022; 23:ijms232213929. [PMID: 36430411 PMCID: PMC9692731 DOI: 10.3390/ijms232213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery. Therefore, types of surface modified siRNA nanoparticles are presented and illustrate how a more efficient and safer distribution of siRNA at the target site is possible by modifying the surface properties of nanoparticles with antibodies. However, the development of such efficient and safe delivery strategies is currently still a major challenge. In consideration of that, this review article aims to demonstrate the function and targeted delivery of siRNA nanoparticles, focusing on the surface modification via antibodies, various lipid- and polymer-components, and the therapeutic effects of these delivery systems.
Collapse
|
8
|
Yang B, Yin S, Bian X, Liu C, Liu X, Yan Y, Zhang C, Zhang H, Hou Z. Preparation and properties of monomethoxyl polyethylene glycol grafted O-carboxymethyl chitosan for edible, fresh-keeping packaging materials. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wu M, Zhong C, Zhang Q, Wang L, Wang L, Liu Y, Zhang X, Zhao X. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. J Nanobiotechnology 2021; 19:39. [PMID: 33549107 PMCID: PMC7866683 DOI: 10.1186/s12951-021-00783-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
A limitation of current anticancer nanocarriers is the contradiction between multiple functions and favorable biocompatibility. Thus, we aimed to develop a compatible drug delivery system loaded with paclitaxel (PTX) for hepatocellular carcinoma (HCC) therapy. A basic backbone, PTX-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV nanoparticle (PHBV-PTX-NPs), was prepared by emulsion solvent evaporation. As a gatekeeper, the pH-sensitive coating was formed by self-polymerization of dopamine (PDA). The HCC-targeted arginine-glycine-aspartic acid (RGD)-peptide and PDA-coated nanoparticles (NPs) were combined through the Michael addition. Subsequently, the physicochemical properties of RGD-PDA-PHBV-PTX-NPs were characterized by dynamic light scattering-autosizer, transmission electron microscope, fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry and X-ray spectroscopy. As expected, the RGD-PDA-PHBV-PTX-NPs showed robust anticancer efficacy in a xenograft mouse model. More importantly, they exhibited lower toxicity than PTX to normal hepatocytes and mouse in vitro and in vivo, respectively. Taken together, these results indicate that the RGD-PDA-PHBV-PTX-NPs are potentially beneficial for easing conflict between multifunction and biocompatible characters of nanocarriers. ![]()
Collapse
Affiliation(s)
- Mingfang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiaoxue Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China. .,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Zhou J, Hou J, Liu Y, Rao J. Targeted delivery of β-glucosidase-loaded magnetic nanoparticles: effect of external magnetic field duration and intensity. Nanomedicine (Lond) 2020; 15:2029-2040. [PMID: 32885735 DOI: 10.2217/nnm-2020-0186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The effect of applied magnetic field duration and intensity on the delivery of β-glucosidase-loaded magnetic nanoparticles was evaluated. Materials & methods: The prepared β-glucosidase-loaded magnetic nanoparticles were targeted to subcutaneous tumors with an external magnetic field. Iron concentration and enzyme activity in tumor tissue were analyzed via electron spin resonance detection, Prussian blue staining and enzyme activity measurement. Results: The increase in magnetic nanoparticles quantity and enzyme activity in tumor tissue was not synchronous with the magnetic targeting duration. In addition, accumulation of magnetic nanoparticles and the increase in enzyme activity were not synchronous with the magnetic field intensity. Conclusion: The results suggested that appropriate magnetic field conditions should be considered for targeted delivery of bioactivity proteins based on magnetic nanoparticles.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Jing Hou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Yunlong Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jun Rao
- Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| |
Collapse
|