1
|
Liu Y, Wu Y, Wang C, Hu W, Zou S, Ren H, Zuo Y, Qu L. MiR-127-3p enhances macrophagic proliferation via disturbing fatty acid profiles and oxidative phosphorylation in atherosclerosis. J Mol Cell Cardiol 2024; 193:36-52. [PMID: 38795767 DOI: 10.1016/j.yjmcc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic pathology, leading to acute coronary heart disease or stroke. MiR-127 has been found significantly upregulated in advanced atherosclerosis. But its function in atherosclerosis remains unexplored. We explored the role of miR-127-3p in regulating atherosclerosis development and its downstream mechanisms. METHODS The expression profile of miR-127 in carotid atherosclerotic plaques of 23 patients with severe carotid stenosis was detected by RT-qPCR and in situ hybridization. Primary bone marrow-derived macrophages (BMDM) stimulated with oxidized low-density lipoprotein were used as an in vitro model. CCK-8, EdU, RT-qPCR, and flow cytometry were used to detect the proliferative capacity and polarization of BMDM, which were infected by lentivirus-carrying plasmid to upregulate or downregulate miR-127-3p expression, respectively. RNA sequencing combined with bioinformatic analysis and targeted fatty acid metabolomics approach were used to detect the transcriptome and lipid metabolites. The association between miR-127-3p and its target was verified by dual-luciferase activity reporting and Western blotting. Oxygen consumption rate of BMDM were detected using seahorse analysis. High-cholesterol-diet-fed low density lipoprotein deficient (LDLR-/-) mice, with-or-without carotid tandem-stenosis surgery, were treated with miR-127-3p agomir or antagomir to examine its effect on plaque development and stability. RESULTS miR-127-3p, not -5p, is elevated in human advanced carotid atheroma and its expression is positively associated with macrophage accummulation in plaques. In vitro, miR-127-3p-overexpressed macrophage exhibites increased proliferation capacity and facilitates M1 polariztion whereas the contrary trend is present in miR-127-3p-inhibited macrophage. Stearoyl-CoA desaturase-1 (SCD1) is one potential target of miR-127-3p. miR-127-3p mimics decreases the activity of 3' untranslated regions of SCD-1. Furthermore, miR-127-3p downregulates SCD1 expression, and reversing the expression of SCD1 attenuates the increased proliferation induced by miR-127-3p overexpression in macrophage. miR-127-3p overexpression could also lead to decreased content of unsaturated fatty acids (UFAs), increased content of acetyl CoA and increased level of oxidative phosphorylation. In vivo, miR-127-3p agomir significantly increases atherosclerosis progression, macrophage proliferation and decreases SCD1 expression and the content of UFAs in aortic plaques of LDLR-/- mice. Conversely, miR-127-3p antagomir attenuated atherosclerosis, macrophage proliferation in LDLR-/- mice, and enhanced carotid plaque stability in mice with vulnerable plaque induced. CONCLUSION MiR-127-3p enhances proliferation in macrophages through downregulating SCD-1 expression and decreasing the content of unsaturated fatty acid, thereby promoting atherosclerosis development and decreasing plaque stability. miR-127-3p/SCD1/UFAs might provide potential therapeutic target for anti-inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Yandong Liu
- Department of Geriatrics, 905th Hospital of PLA NAVY, Shanghai, China; Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China
| | - Yicheng Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China
| | - Chao Wang
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China
| | - Weilin Hu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China
| | - Sili Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China
| | - Huiqiong Ren
- Department of Geriatrics, 905th Hospital of PLA NAVY, Shanghai, China.
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Fu J, Liu J, Zou X, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Transcriptome analysis of mRNA and miRNA in the development of LeiZhou goat muscles. Sci Rep 2024; 14:9858. [PMID: 38684760 PMCID: PMC11058254 DOI: 10.1038/s41598-024-60521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.
Collapse
Affiliation(s)
- Junjie Fu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
4
|
Greene MA, Worley GA, Udoka ANS, Powell RR, Bruce T, Klotz JL, Bridges WC, Duckett SK. Use of AgomiR and AntagomiR technologies to alter satellite cell proliferation in vitro, miRNA expression, and muscle fiber hypertrophy in intrauterine growth-restricted lambs. Front Mol Biosci 2023; 10:1286890. [PMID: 38028550 PMCID: PMC10656622 DOI: 10.3389/fmolb.2023.1286890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: microRNAs (miRNAs) are small non-coding RNAs that work at the posttranscriptional level to repress gene expression. Several miRNAs are preferentially expressed in skeletal muscle and participate in myogenesis. This research was conducted to alter endogenous miRNA expression in skeletal muscle to promote muscle hypertrophy. Methods: Two experiments were conducted using mimic/agomiR or antagomir technologies to alter miRNA expression and examine changes in myoblast proliferation in vitro (experiment 1) and muscle hypertrophy in vivo (experiment 2). In vitro experiments found that antagomiR-22-3p and mimic-127 increased myoblast proliferation compared to other miRNA treatments or controls. These miRNA treatments, antagomiR-22-3p (ANT22) and agomiR-127 (AGO127), were then used for intramuscular injections in longissimus muscle. Results and discussion: The use of antagomiR or mimic/agomiR treatments down-regulated or up-regulated, respectively, miRNA expression for that miRNA of interest. Expression of predicted target KIF3B mRNA for miR-127 was up-regulated and ACVR2a mRNA was up-regulated for miR-22-3p. ANT22 injection also up-regulated the major regulator of protein synthesis (mTOR). Proteomic analyses identified 11 proteins for AGO127 and 9 proteins for ANT22 that were differentially expressed. Muscle fiber type and cross-sectional area were altered for ANT22 treatments to transition fibers to a more oxidative state. The use of agomiR and antagomir technologies allows us to alter miRNA expression in vitro and in vivo to enhance myoblast proliferation and alter muscle fiber hypertrophy in IUGR lambs during early postnatal growth.
Collapse
Affiliation(s)
- M. A. Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - G. A. Worley
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - A. N. S. Udoka
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - R. R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
| | - T. Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - J. L. Klotz
- U. S. Department of Agriculture-Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States
| | - W. C. Bridges
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
5
|
Yun Y, Wu R, He X, Qin X, Chen L, Sha L, Yun X, Nishiumi T, Borjigin G. Integrated Transcriptome Analysis of miRNAs and mRNAs in the Skeletal Muscle of Wuranke Sheep. Genes (Basel) 2023; 14:2034. [PMID: 38002977 PMCID: PMC10671749 DOI: 10.3390/genes14112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474, 461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development. Moreover, the interactions among several predicted miRNA-mRNA pairs (oar-miR-133-HDAC1, oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different developmental stages and revealed that a series of candidate miRNA-mRNA pairs may act as modulators of muscle development. These results will contribute to future studies on the function of miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep.
Collapse
Affiliation(s)
- Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rihan Wu
- College of Biochemistry and Engineering, Hohhot Vocational College, Hohhot 010051, China;
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Tadayuki Nishiumi
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| |
Collapse
|
6
|
MacLeay M, Banos G, Donadeu FX. Association of plasma miRNAs with early life performance and aging in dairy cattle. PLoS One 2023; 18:e0288343. [PMID: 37428722 DOI: 10.1371/journal.pone.0288343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Early life performance traits in dairy cattle can have important influences on lifetime productivity. Poor health and fertility are of great economical and animal welfare concern. Circulating miRNAs have been linked to several livestock traits, including resistance to infection, fertility, and muscle development. This study aimed to identify circulating miRNAs associated with early life performance traits and aging in dairy cattle. Plasma samples from female calves (n = 12) identified retrospectively as differing in health, growth, and fertility outcomes prior to first calving were analyzed using PCR arrays detecting 378 miRNAs. Levels of 6 miRNAs differed significantly in calves with poor growth/fertility relative to controls (t-test: P<0.05). Additionally, general(ized) (non)linear mixed models identified 1 miRNA associated with average daily gain until weaning, 22 with live bodyweight at one year of age, 47 with age at first service, and 19 with number of infections before first calving. Out of 85 distinct miRNAs that were associated with at least one animal trait, 9 miRNAs were validated by RT-qPCR in a larger cohort (n = 91 animals), which included longitudinal plasma samples (calf, heifer, first lactation cow). Significant associations (P<0.05) involving individual miRNAs or ratios between miRNAs and early-life performance traits were identified, but did not retain significance after multiple testing adjustment. However, levels of 8 plasma miRNAs (miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363) changed significantly with age, most prominently during the calf-to-heifer transition. Comparative RT-qPCR analyses of these miRNAs across 19 calf tissues showed that most were ubiquitously expressed. Online database mining identified several pathways involved in metabolism and cell signaling as putative biological targets of these miRNAs. These results suggest that miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363 are involved in regulating growth and development from birth to first lactation (~2 years old) and could provide useful biomarkers of aging in cattle.
Collapse
Affiliation(s)
- Madison MacLeay
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Georgios Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, United Kingdom
| | - Francesc Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
7
|
Effects of the CDC10 ( Septin 7) Gene on the Proliferation and Differentiation of Bovine Intramuscular Preadipocyte and 3T3-L1 Cells. Animals (Basel) 2023; 13:ani13040609. [PMID: 36830396 PMCID: PMC9951720 DOI: 10.3390/ani13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Intramuscular fat content and marbling affecting meat quality are important economic traits in beef cattle. CDC10 (cell division cycle 10 or Septin 7), a member of the septin family involved in cellular proliferation, was considered as a functional and positional candidate gene for beef marbling. In a previous study, we revealed that the expression levels of CDC10 were also positively correlated with marbling scores in Japanese Black cattle. However, the regulatory mechanism of the CDC10 gene on IMF deposition in cattle remains unclear. In the present study, flow cytometry, EdU proliferation assays, and Oil Red O staining results showed that overexpression of CDC10 could promote the differentiation of bovine intramuscular preadipocyte (BIMP) and 3T3-L1 cells, whereas knockdown of CDC10 resulted in the opposite consequences. Furthermore, quantitative PCR and Western blotting results showed that overexpression of CDC10 could promote the expression levels of adipogenic marker genes PPARγ and C/EBPα at both mRNA and protein levels in BIMP and 3T3-L1 cells, whereas knockdown of CDC10 resulted in the opposite consequences. Our results provide new insights into the regulatory roles of CDC10 in adipocytes in animals.
Collapse
|
8
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
9
|
Kim M, Kang D, Kwon MY, Lee HJ, Kim MJ. MicroRNAs as potential indicators of the development and progression of uterine leiomyoma. PLoS One 2022; 17:e0268793. [PMID: 35639702 PMCID: PMC9154092 DOI: 10.1371/journal.pone.0268793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/07/2022] [Indexed: 11/24/2022] Open
Abstract
Recent studies demonstrated a significant role of several microRNAs (miRs) in the development of leiomyoma. Here, we investigated miR expression profiles using microarray and found a significantly higher expression of miRs in leiomyoma than in adjacent myometrium. We also confirmed the upregulation of five selected miRs including miR-181a-5p, 127-3p, 28-3p, 30b-5p and let-7c-5p in cellular proliferation, extracellular matrix turnover, and angiogenesis by RT-qPCR. Interestingly, the miRs showed a higher expression in cases of large leiomyoma or in patients with a history of transfusion due to anemia. We then analyzed the expression of the miR target molecules including Transforming Growth Factor Beta Receptor 2 (TGFBR2) and Insulin-like Growth Factor 2 mRNA Binding Protein 1 (IGF2BP1) via immunohistochemistry. TGFBR2 and IGF2BP1 were positively stained in 81% and 62.5% of leiomyoma tissues but not in adjacent myometrium. Both were more frequently positive in patients with ≥ 6 cm leiomyoma and mass effect. The mean expression levels of miR-181a-5p, 127-3p, 28-3p, 30b-5p and let-7c-5p were higher in cases with TGFBR2 and IGF2BP1 positive leiomyoma. We observed several miRs were overexpressed in leiomyoma tissues, and these results provide insight into the role of miRs in the development and progression of leiomyoma and underscore the need to validate their utility as diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi Yeon Kwon
- Clinical Medicine Research, Bucheon St. Mary’s hospital, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hee Jeong Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Jeong Kim
- Department of Obstetrics & Gynecology, Buheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
11
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
12
|
Acuña-González RJ, Olvera-Valencia M, López-Canales JS, Lozano-Cuenca J, Osorio-Caballero M, Flores-Herrera H. MiR-191-5p is upregulated in culture media of implanted human embryo on day fifth of development. Reprod Biol Endocrinol 2021; 19:109. [PMID: 34256783 PMCID: PMC8278618 DOI: 10.1186/s12958-021-00786-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Morphological features are the most common criteria used to select human embryos for transfer to a receptive uterine cavity. However, such characteristics are not valid for embryos in cellular arrest. Even aneuploid embryos can have normal morphology, and some euploid embryos have aberrant morphology. The aim of this study was to quantify the expression profile of hsa-miR-21-3p, -24-1-5p, -191-5p, and -372-5p in culture media on day 5 of in vitro embryo development, and compare the profiles of two groups of media classified by outcome: successful (n = 25) or unsuccessful (n = 25) implantation pregnancy. METHODS Fifty patients were accepted in the Department of Reproductive Biology of a Hospital in México City, based on the Institutional inclusion criteria for in vitro fertilization. Embryos were transferred to the women on day 5 of cultivation, and the culture media were collected. RNA was isolated from each culture medium with TRIzol reagent, and microRNA (miRNA) expression was detected through RT-PCR with specific primers. Expression bands were quantified by reading optical density. RESULTS There was a 5.2-fold greater expression of hsa-miR-191-5p in the pregnancy-related culture media (p ≤ 0.001) and a 1.6-fold greater level of hsa-miR-24-1-5p (p = 0.043) in the media corresponding to non-pregnant women. No significant difference existed between the two groups hsa-miR-21-3p (p = 0.38) or hsa-miR-372-5p (p = 0.41). CONCLUSIONS Regarding adequate in vitro embryo development, hsa-miR-191-5p could possibly represent a positive biomarker, while has-miR-24-1-5p may indicate poor prognosis. This former miRNA modulates IGF2BP-1 and IGF2R, associated with the implantation window. On the other hand, hsa-miR-24-1-5p may be related to a poor prognosis of human embryo development.
Collapse
Affiliation(s)
- Ricardo Josué Acuña-González
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México
- Department of Biología de la Reproducción, INPerIER, Ciudad de México, México
| | - Mercedes Olvera-Valencia
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México
| | | | - Jair Lozano-Cuenca
- Department of Fisiología y Desarrollo Celular, INPerIER, Ciudad de México, México
| | | | - Héctor Flores-Herrera
- Department of Immunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" (INPerIER), Ciudad de México, México.
| |
Collapse
|
13
|
miR-127-3p Is an Epigenetic Activator of Myofibroblast Senescence Situated within the MicroRNA-Enriched Dlk1-Dio3‒Imprinted Domain on Mouse Chromosome 12. J Invest Dermatol 2020; 141:1076-1086.e3. [PMID: 33279585 DOI: 10.1016/j.jid.2020.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023]
Abstract
During wound healing, fibroblasts differentiate into nonproliferative contractile myofibroblasts, contribute to skin repair, and eventually undergo apoptosis or become senescent. MicroRNAs are post-transcriptional regulators of gene expression networks that control cell fate and survival and may also regulate senescence. In this study, we determined the regulated microRNAs in myofibroblasts isolated from wounds and analyzed their role in senescent myofibroblast formation. Transcriptome profiling showed that a 200 kilobase pair region of the Dlk1-Dio3‒imprinted domain on mouse chromosome 12 encodes for most of the upregulated microRNAs in the entire genome of mouse myofibroblasts. Among those, miR-127-3p induced a myofibroblast-like phenotype associated with a block in proliferation. Molecular analysis revealed that miR-127-3p induced a prolonged cell cycle arrest with unique molecular features of senescence, including the activation of the senescence-associated β-galactosidase, increase in p53 and p21 levels, inhibition of lamin B1, proliferation factors, and the production of senescence-associated inflammatory and extracellular matrix‒remodeling components. Hence, miR-127-3p emerges as an epigenetic activator regulating the transition from repair to remodeling during skin wound healing but may also induce age-related defects, pathological scarring, and fibrosis, all linked to myofibroblast senescence.
Collapse
|