1
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
2
|
Gupta S, Siebner H, Ramanathan G, Ronen Z. Inhibition effect of 2,4,6-trinitrotoluene (TNT) on RDX degradation by rhodococcus strains isolated from contaminated soil and water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120018. [PMID: 36002099 DOI: 10.1016/j.envpol.2022.120018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel.
| |
Collapse
|
3
|
Mary Celin S, Sharma B, Bhanot P, Kalsi A, Sahai S, Tanwar RK. Trends in environmental monitoring of high explosives present in soil/sediment/groundwater using LC-MS/MS. MASS SPECTROMETRY REVIEWS 2022:e21778. [PMID: 35657034 DOI: 10.1002/mas.21778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination by explosives occurs due to improper handling and disposal procedures. Explosives and their transformation products pose threat to human health and the ecosystem. Trace level detection of explosives present in different environmental matrices is a challenge, due to the interference caused by matrix components and the presence of cocontaminants. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an advanced analytical tool, which is ideal for quantitative and qualitative detection of explosives and its metabolites at trace levels. This review aims to showcase the current trends in the application of LC-MS/MS for detecting explosives present in soil, sediment, and groundwater with detection limits ranging from nano to femtogram levels. Specificity and advantages of using LC-MS/MS over conventional analytical methods and various processing methods and techniques used for sample preparation are discussed in this article. Important application aspects of LC-MS/MS on environmental monitoring include site characterization and degradation evaluation. Studies on qualitative and quantitative LC-MS/MS analysis in determining the efficiency of treatment processes and contamination mapping, optimized conditions of LC and MS/MS adopted, role of different ionization techniques and mass analyzers in detection of explosives and its metabolites, relative abundance of various product ions formed on dissociation and the levels of detection achieved are reviewed. Ionization suppression, matrix effect, additive selection are some of the major factors which influence MS/MS detection. A summary of challenges and future research insights for effective utilization of this technique in the environmental monitoring of explosives are presented.
Collapse
Affiliation(s)
- Senthil Mary Celin
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Bhumika Sharma
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Pallvi Bhanot
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Anchita Kalsi
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Sandeep Sahai
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Rajesh Kumar Tanwar
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| |
Collapse
|
4
|
Aamir Khan M, Sharma A, Yadav S, Celin SM, Sharma S. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. CHEMOSPHERE 2022; 294:133641. [PMID: 35077733 DOI: 10.1016/j.chemosphere.2022.133641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
When high-energy explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT) are discharged into the surrounding soil and water during production, testing, open dumping, military, or civil activities, they leave a toxic footprint. The US Environmental Protection Agency has labeled RDX as a potential human carcinogen that must be degraded from contaminated sites quickly. Bioremediation of RDX is an exciting prospect that has received much attention in recent years. However, a lack of understanding of RDX biodegradation and the limitations of current approaches have hampered the widespread use of biodegradation-based strategies for RDX remediation at contamination sites. Consequently, new bioremediation technologies are required to enhance performance. In this review, we explore the requirements for in-silico analysis for producing biological models of microbial remediation of RDX in soil. On the other hand, potential gene editing methods for getting the host with target gene sequences responsible for the breakdown of RDX are also reported. Microbial formulations and biosensors for detection and bioremediation are also briefly described. The biodegradation of RDX offers an alternative remediation method that is both cost-effective and ecologically acceptable. It has the potential to be used in conjunction with other cutting-edge technologies to further increase the efficiency of RDX degradation.
Collapse
Affiliation(s)
- Mohd Aamir Khan
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Sonal Yadav
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - S Mary Celin
- Centre for Fire, Explosives and Environment Safety, Defence Research & Development Organization, Brig. Mazumdar Road, Delhi, 110 054, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
5
|
Yang X, Lai JL, Zhang Y, Luo XG. Reshaping the microenvironment and bacterial community of TNT- and RDX-contaminated soil by combined remediation with vetiver grass (Vetiveria ziznioides) and effective microorganism (EM) flora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152856. [PMID: 34998745 DOI: 10.1016/j.scitotenv.2021.152856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Explosive pollutants remaining in global soils are serious threats to human health and ecological safety. Soils contaminated by trinitrotoluene (TNT) and cyclotrimethylene trinitramine (RDX) are simulated in this study and remediated using vetiver grass and effective microorganism (EM) flora to determine the efficacy of combined remediation in reshaping the microenvironment and bacterial community of soils contaminated by explosives. The degradation rates of TNT and RDX after 60 days of combined remediation were 95.66% and 84.37%, respectively. Soil microbial activity and enzyme activities related to the nitrogen cycle were upregulated. The content of soil elements in the remediation group changed significantly. Vetiver remediation increased the diversity and significantly changed the structure of the microbial community. Notably, bacteria, such as Sphingomonadaceae and Actinobacteriota, which can degrade explosives, occupied the soil niche, and the Proteobacteria and Bacteroidota, which are involved in sugar metabolism, showed particularly increased abundance. The metabolism of soil carbohydrates, fatty acids, and amino acids was upregulated in the vetiver, EM flora, and combined vetiver+EM flora remediation groups, and the most significantly upregulated pathway was galactose metabolism. The combined vetiver and EM flora treatment of soil contaminated by explosives greatly improved the ecology of the soil microenvironment.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
6
|
Sharma K, Sharma P, Celin SM, Rai PK, Sangwan P. Degradation of high energetic material hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a microbial consortium using response surface methodological approach. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractSoil and water get polluted with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) during its manufacturing, storage and use for civil and military purposes. RDX has toxic effects on living and non-living environment and is a recalcitrant compound. Therefore, the remediation of this compound is necessary. Microbial degradation of RDX can be a suitable and sustainable option to reduce its deleterious impact on the environment. Therefore, the optimization for degradation of energetic munition compound RDX employing the consortium of native bacterial species, isolated from an actual contaminated site, was performed. The experiment was planned with three independent variables (initial RDX concentration, inoculum size of microbes, and duration of the experiment) and three dependent variables (percentage removal of RDX, optical density, and nitrite release). Both independent and dependent variables were analyzed by the response surface methodology (RSM) using the Box–Behnken design. The statistical analysis using analysis of variance (ANOVA) depicted a high regression coefficient, R2 = 0.9881 with the statistically significant p-value fitted into a quadratic regression model for percentage removal of RDX. Results showed an initial RDX concentration of 40 mg/L, inoculation size 6 mL and a time duration of 12 days was optimal for the reduction of RDX up to 80.4%.
Collapse
|