1
|
Yang Y, Li Z, Li Q, Ma K, Lin Y, Feng H, Wang T. Increase recombinant antibody yields through optimizing vector design and production process in CHO cells. Appl Microbiol Biotechnol 2022; 106:4963-4975. [PMID: 35788878 DOI: 10.1007/s00253-022-12051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used host cells for the production of recombinant monoclonal antibodies (mAbs) due to their several advantages. Although the yields of recombinant mAbs can be greatly increased by some strategies, such as medium formulation, culture conditions, and cell engineering, most studies focused on either upstream design or downstream processes. In the present study, we first expressed recombinant adalimumab through combination of the vector design and production process optimization in CHO cells. Bicistronic vector, monocistronic vector, and dual promoter vector were constructed, and the production process was optimized using low-temperature and fed-batch culture. The results showed that the dual promoter vector exhibited the highest yield under the transient and stable transfected cells among three different vector systems in CHO cells. In addition, low-temperature and fed-batch culture could further improve the yields of adalimumab. The purified antibody displayed tumor necrosis factor-α (TNF-α) binding activity. In conclusion, combination of expression vector design and production process optimization can achieve higher expression of recombinant mAbs in CHO cells. KEY POINTS: • The dual promoter vector is more effective for expressing recombinant antibodies. • The yields of antibodies are related to the LC chain expression level. • Low-temperature and feed addition can promote antibody production.
Collapse
Affiliation(s)
- Yongxiao Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhengmei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Qin Li
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Kai Ma
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yan Lin
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Huigen Feng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|