1
|
Tekin N, Köse T, Karatay SE, Dönmez G. Biosorption of Remazol Brilliant Blue R textile dye using Clostridium beijerinckii by biorefinery approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51568-51581. [PMID: 39112901 DOI: 10.1007/s11356-024-34624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
The current study proposes RBBR biosorption by Clostridium beijerinckii DSMZ 6422 biomass remaining after biobutanol production from pumpkin peel (PP) by a zero-waste approach. Efficient biobutanol production was achieved by investigating initial PP concentrations (5-20% without or with enzymatic hydrolysis) and fermentation time. According to this, the highest concentrations of biobutanol and total ABE were obtained as 4.87 g/L and 8.13 g/L in the presence of 10% PP without enzymatic hydrolysis at 96 h. Furthermore, based on the zero-waste approach, C. beijerinckii DSMZ 6422 biomass obtained after biofuel production was used as a biosorbent for the removal of RBBR dye. Response surface methodology (RSM), commonly utilized for the experimental design, was used to specify the optimized biosorption conditions of RBBR, including initial dye concentration (50-200 mg/L), initial pH (2-6), biosorbent concentration (1-3 g/L), and contact time (0-240 min). The highest biosorption under optimized conditions with RSM was 98% in the presence of 194.36 mg/L RBBR and 2.65 g/L biosorbent at pH 2 and 15 min. This is the first report in the literature about the biosorption of RBBR dye by anaerobic C. beijerinckii biomass after the biobutanol production process. This study also shows the efficient usage of agricultural and microbial wastes in different areas based on zero-waste applications.
Collapse
Affiliation(s)
- Nazlıhan Tekin
- Biology Department, Science Faculty, Ankara University, Beşevler, Ankara, 06100, Turkey
| | - Tuğba Köse
- Biology Department, Science Faculty, Ankara University, Beşevler, Ankara, 06100, Turkey
| | - Sevgi Ertuğrul Karatay
- Biology Department, Science Faculty, Ankara University, Beşevler, Ankara, 06100, Turkey.
| | - Gönül Dönmez
- Biology Department, Science Faculty, Ankara University, Beşevler, Ankara, 06100, Turkey
| |
Collapse
|
2
|
Tripathi M, Singh S, Pathak S, Kasaudhan J, Mishra A, Bala S, Garg D, Singh R, Singh P, Singh PK, Shukla AK, Pathak N. Recent Strategies for the Remediation of Textile Dyes from Wastewater: A Systematic Review. TOXICS 2023; 11:940. [PMID: 37999592 PMCID: PMC10674586 DOI: 10.3390/toxics11110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The presence of dye in wastewater causes substantial threats to the environment, and has negative impacts not only on human health but also on the health of other organisms that are part of the ecosystem. Because of the increase in textile manufacturing, the inhabitants of the area, along with other species, are subjected to the potentially hazardous consequences of wastewater discharge from textile and industrial manufacturing. Different types of dyes emanating from textile wastewater have adverse effects on the aquatic environment. Various methods including physical, chemical, and biological strategies are applied in order to reduce the amount of dye pollution in the environment. The development of economical, ecologically acceptable, and efficient strategies for treating dye-containing wastewater is necessary. It has been shown that microbial communities have significant potential for the remediation of hazardous dyes in an environmentally friendly manner. In order to improve the efficacy of dye remediation, numerous cutting-edge strategies, including those based on nanotechnology, microbial biosorbents, bioreactor technology, microbial fuel cells, and genetic engineering, have been utilized. This article addresses the latest developments in physical, chemical, eco-friendly biological and advanced strategies for the efficient mitigation of dye pollution in the environment, along with the related challenges.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sakshi Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Jahnvi Kasaudhan
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Aditi Mishra
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001, India
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
3
|
Chen H, Wang K, She S, Yu X, Yu L, Xue G, Li X. Insight into dissolved organic nitrogen transformation and characteristics: Focus on printing and dyeing wastewater treatment process. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131086. [PMID: 36857832 DOI: 10.1016/j.jhazmat.2023.131086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Textile industry discharges large amounts of printing and dyeing wastewater (PDW) containing high concentration of refractory dissolved organic nitrogen (DON). However, the DON transformation and characteristics during PDW treatment, and its potential environment impact receive little concern. Treatment groups of dyeing wastewater (G-RB5), printing wastewater (G-Urea) and domestic wastewater (G-NH4Cl) with Reactive Black 5 (RB5), Urea and NH4Cl as influent nitrogen species were set to compare the DON behavior during the hydrolytic acidification-aerobic-anoxic process. G-RB5 exhibited higher DON concentrations with greater fluctuations, and its effluent dominated low molecular weight (LMW) and hydrophilic DON, showing high bioavailability (67.6%) and low biodegradation (8.0%). In the aerobic section, the concentration of microorganism-derived DON in G-RB5 was higher but the nitrogen species were fewer than G-Urea and G-NH4Cl. Grey relational analysis revealed that Proteobacteria and Thauera were the common bacteria strains showing high association degree (γ > 0.9) with biodegradable DON (ABDON) in all groups; while microbes related with biodegradable DON (BDON) varied between groups. The higher contents of DON, ABDON, LMW-DON and hydrophilic DON induced by RB5 highlight the importance of controlling DON from textile industry to mitigate the potential risk like algae growth stimulation, which needs more attention in future.
Collapse
Affiliation(s)
- Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Kai Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Shuaiqi She
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luying Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
5
|
Jamal QMS, Ahmad V. Lysinibacilli: A Biological Factories Intended for Bio-Insecticidal, Bio-Control, and Bioremediation Activities. J Fungi (Basel) 2022; 8:jof8121288. [PMID: 36547621 PMCID: PMC9783698 DOI: 10.3390/jof8121288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Microbes are ubiquitous in the biosphere, and their therapeutic and ecological potential is not much more explored and still needs to be explored more. The bacilli are a heterogeneous group of Gram-negative and Gram-positive bacteria. Lysinibacillus are dominantly found as motile, spore-forming, Gram-positive bacilli belonging to phylum Firmicutes and the family Bacillaceae. Lysinibacillus species initially came into light due to their insecticidal and larvicidal properties. Bacillus thuringiensis, a well-known insecticidal Lysinibacillus, can control many insect vectors, including a malarial vector and another, a Plasmodium vector that transmits infectious microbes in humans. Now its potential in the environment as a piece of green machinery for remediation of heavy metal is used. Moreover, some species of Lysinibacillus have antimicrobial potential due to the bacteriocin, peptide antibiotics, and other therapeutic molecules. Thus, this review will explore the biological disease control abilities, food preservative, therapeutic, plant growth-promoting, bioremediation, and entomopathogenic potentials of the genus Lysinibacillus.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Correspondence:
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|