1
|
Venkataraman S, Karthikanath PR, Gokul CS, Adhithya M, Vaishnavi VK, Rajendran DS, Vaidyanathan VK, Natarajan R, Balakumaran PA, Kumar VV. Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors. Food Sci Biotechnol 2025; 34:1-18. [PMID: 39758718 PMCID: PMC11695551 DOI: 10.1007/s10068-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
This review comprehensively examines the advancements in engineering thermostable phytase through genetic modification and immobilization techniques, focusing on developments from the last seven years. Genetic modifications, especially protein engineering, have enhanced enzyme's thermostability and functionality. Immobilization on various supports has further increased thermostability, with 50-60 % activity retention at higher temperature (more than 50 °C). In the food industry, phytase is used in flour processing and bread making, reducing phytate content by around 70 %, thereby improving nutritional value and mineral bioavailability. In the feed industry, it serves as a poultry feed additive, breaking down phytates to enhance nutrient availability and feed efficiency. The enzyme's robustness at high temperatures makes it valuable in feed processing. The integration of microbial production of phytase with genetically engineered strains followed by carrier free immobilization represents a synergistic approach to fortify enzyme structure and improve thermal stability. These advancement in the development of phytase enzyme capable of withstanding high temperatures, thereby pivotal for industrial utilization.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - P. R. Karthikanath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - C. S. Gokul
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
| | - M. Adhithya
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - V. K. Vaishnavi
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - Vasanth Kumar Vaidyanathan
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India
| | - Ramesh Natarajan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India
| |
Collapse
|
2
|
Priya, Singh B, Sharma JG, Giri B. Optimization of phytase production by Penicillium oxalicum in solid-state fermentation for potential as a feed additive. Prep Biochem Biotechnol 2024; 54:819-829. [PMID: 38152875 DOI: 10.1080/10826068.2023.2297688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The study aims to statistically optimize the phytase production by Penicillium oxalicum PBG30 in solid-state fermentation using wheat bran as substrate. Variables viz. pH, incubation days, MgSO4, and Tween-80 were the significant parameters identified through the Plackett-Burman design (PBD) that majorly influenced the phytase production. Further, central composite design (CCD) method of response surface methodology (RSM) defined the optimum values for these factors i.e., pH 7.0, 5 days of incubation, 0.75% of MgSO4, and 3.5% of Tween-80 that leads to maximum phytase production of 475.42 U/g DMR. Phytase production was also sustainable in flasks and trays of different sizes with phytase levels ranging from 394.95 to 475.42 U/g DMR. Enhancement in phytase production is 5.6-fold as compared to unoptimized conditions. The in-vitro dephytinization of feed showed an amelioration in the nutritive value by releasing inorganic phosphate and other nutrients in a time-dependent manner. The highest amount of inorganic phosphate (33.986 mg/g feed), reducing sugar (134.4 mg/g feed), and soluble protein (115.52 mg/g feed) was achieved at 37 °C with 200 U of phytase in 0.5 g feed for 48 h. This study reports the economical and large-scale production of phytase with applicability in enhancing feed nutrition.
Collapse
Affiliation(s)
- Priya
- Environmental and Industrial Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana
- Department of Biotechnology, Central University of Haryana, Mahendargarh, Haryana
| | - Jai Gopal Sharma
- Environmental and Industrial Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi
| | - Bhoopander Giri
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi
| |
Collapse
|
3
|
Urgessa OE, Koyamo R, Dinka H, Tefese K, Gemeda MT. Review on Desirable Microbial Phytases as a Poultry Feed Additive: Their Sources, Production, Enzymatic Evaluation, Market Size, and Regulation. Int J Microbiol 2024; 2024:9400374. [PMID: 38962397 PMCID: PMC11221984 DOI: 10.1155/2024/9400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 07/05/2024] Open
Abstract
Poultry's digestive tract lacks hydrolytic phytase enzymes, which results in chelation of dietary minerals, vital amino acids, proteins, and carbohydrates, phytate-phosphate unavailability, and contamination of the environment due to phosphorus. Therefore, it is necessary to use exogenous microbial phytases as feed additive to chicken feed to catalyze the hydrolysis of dietary phytate. Potential sources of microbial isolates that produce desired phytases for chicken feed supplementation have been isolated from agricultural croplands. It is achievable to isolate phytase-producing bacteria isolates using both broth and agar phytase screening media. Potential substrates for submerged fermentation (SmF) for bacterial phytase production and solid-state fermentation (SSF) for fungal phytase production include rice and wheat bran. Following fermentation, saturated ammonium sulphate precipitation is typically used to partially purify microbial culture filtrate. The precipitate is then desalted. Measurements of the pH optimum and stability, temperature optimum and stability, metal ions stability, specificity and affinity to target substrate, proteolysis resistance, storage stability, and in vitro feed dephosphorylation are used to perform an enzymatic evaluation of phytase as an additive for poultry feed. The growth of the feed phytase market is primarily due to the expansion of chicken farms to meet the demand for meat and eggs from humans. The Food and Drug Administration in the USA and the European Food and Safety Authority are primarily in charge of putting rules pertaining to feed phytase use in chicken feed into effect. Conclusively, important components of the production of phytase additives for poultry feed include identifying a reliable source for potential microbe isolation, selecting an economical method of phytase production, thoroughly characterizing the biochemical properties of phytase, and comprehending the size and regulation of the current feed phytase market.
Collapse
Affiliation(s)
- Olyad Erba Urgessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Rufael Koyamo
- Department of Biology, College of Natural and Computational Sciences, Oda Bultum University, Chiro, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Ketema Tefese
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Science, Adama Science and Technology University, Adama, Ethiopia
| | - Mesfin Tafesse Gemeda
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Miyamoto H, Kikuchi J. An evaluation of homeostatic plasticity for ecosystems using an analytical data science approach. Comput Struct Biotechnol J 2023; 21:869-878. [PMID: 36698969 PMCID: PMC9860287 DOI: 10.1016/j.csbj.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The natural world is constantly changing, and planetary boundaries are issuing severe warnings about biodiversity and cycles of carbon, nitrogen, and phosphorus. In other views, social problems such as global warming and food shortages are spreading to various fields. These seemingly unrelated issues are closely related, but it can be said that understanding them in an integrated manner is still a step away. However, progress in analytical technologies has been recognized in various fields and, from a microscopic perspective, with the development of instruments including next-generation sequencers (NGS), nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC/MS), and liquid chromatography-mass spectrometry (LC/MS), various forms of molecular information such as genome data, microflora structure, metabolome, proteome, and lipidome can be obtained. The development of new technology has made it possible to obtain molecular information in a variety of forms. From a macroscopic perspective, the development of environmental analytical instruments and environmental measurement facilities such as satellites, drones, observation ships, and semiconductor censors has increased the data availability for various environmental factors. Based on these background, the role of computational science is to provide a mechanism for integrating and understanding these seemingly disparate data sets. This review describes machine learning and the need for structural equations and statistical causal inference of these data to solve these problems. In addition to introducing actual examples of how these technologies can be utilized, we will discuss how to use these technologies to implement environmentally friendly technologies in society.
Collapse
Affiliation(s)
- Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
- Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba, Chiba 260-0034, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|