1
|
Sajjadi S, Shayanfar A, Kiafar F, Siahi-Shadbad M. Tacrolimus: Physicochemical stability challenges, analytical methods, and new formulations. Int J Pharm X 2024; 8:100285. [PMID: 39328187 PMCID: PMC11426107 DOI: 10.1016/j.ijpx.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Tacrolimus, a potent immunosuppressant, is widely used in several formulations to treat organ rejection in transplant patients. However, its physicochemical stability poses significant challenges, including thermal instability, photostability issues, low solubility, and drug-excipient incompatibility. This review article focuses on the details of these challenges and discusses the analytical methods employed to study tacrolimus stability, such as thermal, spectroscopic, and chromatographic methods in different formulations. New formulations to enhance tacrolimus stability are explored, including lipid-based nanocarriers, polymers, and thin film freezing. Researchers and formulators can optimize tacrolimus formulations to improve efficacy and patient outcomes by understanding and addressing these stability challenges.
Collapse
Affiliation(s)
- Sara Sajjadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Elumalai L, Nagarajan S, Anbalmani S, Murthy S, Manikkam R, Ramasamy B. Bioactive compound from marine seagrass Streptomyces argenteolus TMA13: combatting fish pathogens with time-kill kinetics and live-dead cell imaging. Braz J Microbiol 2024; 55:2669-2681. [PMID: 39028533 PMCID: PMC11405562 DOI: 10.1007/s42770-024-01407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Actinobacteria, pervasive in aquatic and terrestrial environments, exhibit a filamentous morphology, possess DNA with a specific G + C content and production of numerous secondary metabolites. This study, focused on actinobacteria isolated from marine seagrass, investigating their antibacterial activity against fish pathogens. Among 28 isolates, Streptomyces argenteolus TMA13 displayed the maximum zone of inhibition against fish pathogens-Aeromonas hydrophila (10 mm), Aeromonas caviae (22 mm), Edwardsiella tarda (17 mm), Vibrio harveyi (22 mm) and Vibrio anguillarum (12 mm) using the agar plug method. Optimization of this potent strain involved with various factors, including pH, temperature, carbon source and salt condition to enhance both yield production and antibacterial efficacy. In anti-biofilm assay shows the maximum percentage of inhibition while increasing concentration of TMA13 extract. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) assays with TMA13 crude extract demonstrated potent activity against fish pathogens at remarkably low concentrations. Time-kill kinetics assay showcased growth curve variations over different time intervals for all fish pathogens treated with a 100 µg/ml concentration of crude extract, indicating a decline in cells viability and progression into the death phase. Additionally, fluorescence microscopic visualization of bacterial cells exposed to the extracts emitting green and red fluorescence, enabling live-dead cell differentiation was also studied. Further characterization of the crude extract through GC-MS and FT-IR analyses performed and identified secondary metabolites with functional groups exhibiting significant antibacterial activity. This study elucidates the capacity of Streptomyces argenteolus TMA13 to enhance the production of antibiotic compounds effective against fish pathogens.
Collapse
Affiliation(s)
- Lokesh Elumalai
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Siddharthan Nagarajan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Sivarajan Anbalmani
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Sangeetha Murthy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Balagurunathan Ramasamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhou JY, Ma BB, Zhao QW, Mao XM. Development of a native-locus dual reporter system for the efficient screening of the hyper-production of natural products in Streptomyces. Front Bioeng Biotechnol 2023; 11:1225849. [PMID: 37456716 PMCID: PMC10343952 DOI: 10.3389/fbioe.2023.1225849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Streptomyces is renowned for its abundant production of bioactive secondary metabolites, but most of these natural products are produced in low yields. Traditional rational network refactoring is highly dependent on the comprehensive understanding of regulatory mechanisms and multiple manipulations of genome editing. Though random mutagenesis is fairly straightforward, it lacks a general and effective strategy for high throughput screening of the desired strains. Here in an antibiotic daptomycin producer S. roseosporus, we developed a dual-reporter system at the native locus of the daptomycin gene cluster. After elimination of three enzymes that potentially produce pigments by genome editing, a gene idgS encoding the indigoidine synthetase and a kanamycin resistant gene neo were integrated before and after the non-ribosomal peptidyl synthetase genes for daptomycin biosynthesis, respectively. After condition optimization of UV-induced mutagenesis, strains with hyper-resistance to kanamycin along with over-production of indigoidine were efficiently obtained after one round of mutagenesis and target screening based on the dual selection of the reporter system. Four mutant strains showed increased production of daptomycin from 1.4 to 6.4 folds, and significantly improved expression of the gene cluster. Our native-locus dual reporter system is efficient for targeting screening after random mutagenesis and would be widely applicable for the effective engineering of Streptomyces species and hyper-production of these invaluable natural products for pharmaceutical development.
Collapse
Affiliation(s)
- Jing-Yi Zhou
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Bin-Bin Ma
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, China
| | - Xu-Ming Mao
- Department of Clinical Pharmacy, The First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
4
|
Chen J, Lan X, Jia R, Hu L, Wang Y. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces alfalfae XN-04. Microorganisms 2022; 10:microorganisms10091854. [PMID: 36144456 PMCID: PMC9501596 DOI: 10.3390/microorganisms10091854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized liquid fermentation medium components of XN-04, which can significantly increase the antifungal activity and biomass of XN-04. Seven variables, including soluble starch, KNO3, soybean cake powder, K2HPO4, MgSO4·7H2O, CaCO3 and FeSO4·7H2O, were identified as the best ingredients based on one-factor-at-a-time (OFAT) method. The results of Plackett–Burman Design (PBD) showed that soluble starch, soybean cake powder and K2HPO4 were the most significant variables among the seven variables. The steepest climbing experiment and response surface methodology (RSM) were performed to determine the interactions among these three variables and fine-tune the concentrations. The optimal compositions of medium were as follows: soluble starch (26.26 g/L), KNO3 (1.00 g/L), soybean cake powder (23.54 g/L), K2HPO4 (0.27 g/L), MgSO4·7H2O (0.50 g/L), CaCO3 (1.00 g/L) and FeSO4·7H2O (0.10 g/L). A verification experiment was then carried out under the optimized conditions, and the results revealed the mycelial dry weight of S. alfalfae XN-04 reaching 6.61 g/L. Compared with the initial medium, a 7.47-fold increase in the biomass was achieved using the optimized medium. Moreover, the active ingredient was purified from the methanol extract of S. alfalfae XN-04 mycelium and then identified as roflamycoin (a polyene macrolide antibiotic). The results may provide new insights into the development of S. alfalfae XN-04 fermentation process and the control of the Fusarium wilt of cotton and other plant diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Correspondence: ; Tel.: +86-187-9280-9011
| |
Collapse
|
5
|
Del Carratore F, Hanko EK, Breitling R, Takano E. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr Opin Biotechnol 2022; 77:102762. [PMID: 35908316 DOI: 10.1016/j.copbio.2022.102762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Streptomyces is one of the most relevant genera in biotechnology, and its rich secondary metabolism is responsible for the biosynthesis of a plethora of bioactive compounds, including several clinically relevant drugs. The use of Streptomyces species for the manufacture of natural products has been established for more than half a century; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionised the optimisation of Streptomyces as cell factories and drastically expanded the biotechnological potential of these bacteria. Here, we illustrate the most exciting advances reported in the past few years, with a particular focus on the approaches significantly improving the biotechnological capacity of Streptomyces to produce clinical drugs and other valuable secondary metabolites.
Collapse
Affiliation(s)
- Francesco Del Carratore
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Erik Kr Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
6
|
Shen N, Li S, Qin Y, Jiang M, Zhang H. Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Yan Qin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| |
Collapse
|
7
|
Yang HJ, Zhang ZL, Yan LB, Chen ZQ, ju Lin X, Cheng X, Zhou JM, Wang DS, Lian YY. Modification of nanoscale polymeric adsorbent for the preparative separation and purification of tacrolimus from fermentation broth of Streptomyces tsukubaensis. J Chromatogr A 2022; 1675:463180. [DOI: 10.1016/j.chroma.2022.463180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|