1
|
Fan XY, Yu Y, Yao Y, Li WD, Tao FY, Wang N. Applications of Ene-Reductases in the Synthesis of Flavors and Fragrances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18305-18320. [PMID: 38966982 PMCID: PMC11342376 DOI: 10.1021/acs.jafc.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Flavors and fragrances (F&F) are interesting organic compounds in chemistry. These compounds are widely used in the food, cosmetic, and medical industries. Enzymatic synthesis exhibits several advantages over natural extraction and chemical preparation, including a high yield, stable quality, mildness, and environmental friendliness. To date, many oxidoreductases and hydrolases have been used to biosynthesize F&F. Ene-reductases (ERs) are a class of biocatalysts that can catalyze the asymmetric reduction of α,β-unsaturated compounds and offer superior specificity and selectivity; therefore, ERs have been increasingly considered an ideal alternative to their chemical counterparts. This review summarizes the research progress on the use of ERs in F&F synthesis over the past 20 years, including the achievements of various scholars, the differences and similarities among the findings, and the discussions of future research trends related to ERs. We hope this review can inspire researchers to promote the development of biotechnology in the F&F industry.
Collapse
Affiliation(s)
- Xin-Yue Fan
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yuan Yu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yao Yao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Wen-Dian Li
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Fei-Yan Tao
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Na Wang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| |
Collapse
|
2
|
Cancellieri MC, Nobbio C, Gatti FG, Brenna E, Parmeggiani F. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances. J Biotechnol 2024; 390:13-27. [PMID: 38761886 DOI: 10.1016/j.jbiotec.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.
Collapse
Affiliation(s)
- Maria C Cancellieri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Celeste Nobbio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
3
|
Qi Z, Tong X, Ke K, Wang X, Pei J, Bu S, Zhao L. De Novo Synthesis of Dihydro-β-ionone through Metabolic Engineering and Bacterium-Yeast Coculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3066-3076. [PMID: 38294193 DOI: 10.1021/acs.jafc.3c07291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dihydro-β-ionone is a common type of ionone used in the flavor and fragrance industries because of its characteristic scent. The production of flavors in microbial cell factories offers a sustainable and environmentally friendly approach to accessing them, independent of extraction from natural sources. However, the native pathway of dihydro-β-ionone remains unclear, hindering heterologous biosynthesis in microbial hosts. Herein, we devised a microbial platform for de novo syntheses of dihydro-β-ionone from a simple carbon source with glycerol. The complete dihydro-β-ionone pathway was reconstructed in Escherichia coli with multiple metabolic engineering strategies to generate a strain capable of producing 8 mg/L of dihydro-β-ionone, although this was accompanied by a surplus precursor β-ionone in culture. To overcome this issue, Saccharomyces cerevisiae was identified as having a conversion rate for transforming β-ionone to dihydro-β-ionone that was higher than that of E. coli via whole-cell catalysis. Consequently, the titer of dihydro-β-ionone was increased using the E. coli-S. cerevisiae coculture to 27 mg/L. Our study offers an efficient platform for biobased dihydro-β-ionone production and extends coculture engineering to overproducing target molecules in extended metabolic pathways.
Collapse
Affiliation(s)
- Zhipeng Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xinyi Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Kaixuan Ke
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyi Wang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Su Bu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| |
Collapse
|