1
|
Galappaththi HSSD, de Silva WAPP, Clavijo Mccormick A. A mini-review on the impact of common gorse in its introduced ranges. Trop Ecol 2023; 64:1-25. [PMID: 35531346 PMCID: PMC9059460 DOI: 10.1007/s42965-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 03/20/2022] [Indexed: 12/05/2022]
Abstract
It is indisputable that invasive plant species strongly impact the ecosystems they invade. Many of such impacts can be negative and threaten the local species through competition, environmental change, or habitat loss. However, introduced plants may also have positive roles in the ecosystems they invade. This review extracted information from reports on common gorse (Ulex europaeus), one of the top 100 invasive plants on the earth, including its detrimental effects and potential beneficial roles in invaded ecosystems. The reduction of native fauna and flora are the main harmful effects of common gorse identified by the literature review. Soil impoverishment and fire hazards are other negative impacts reported for common gorse that could affect agricultural systems and local economies. Despite the negative impacts, reports of positive ecological services provided by common gorse also exist, e.g., as a nursery plant or habitat for endangered native animals. We also reviewed the known human uses of this plant that could support management strategies through harvest and benefit the local communities, including its use as biofuel, raw matter for xylan extraction, medicine, and food. Finally, our review identified the gaps in the literature regarding the understanding of the beneficial role of common gorse on native ecosystems and potential human uses, especially in the tropics.
Collapse
Affiliation(s)
| | | | - Andrea Clavijo Mccormick
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
3
|
Banasiewicz J, Granada CE, Lisboa BB, Grzesiuk M, Matuśkiewicz W, Bałka M, Schlindwein G, Vargas LK, Passaglia LMP, Stępkowski T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Syst Appl Microbiol 2021; 44:126203. [PMID: 33857759 DOI: 10.1016/j.syapm.2021.126203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Camille E Granada
- Universidade do Vale do Taquari - UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Małgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Weronika Matuśkiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mateusz Bałka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gilson Schlindwein
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Uddin MN, Asaeda T, Shampa SH, Robinson RW. Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L. Ecol Evol 2020; 10:7463-7475. [PMID: 32760541 PMCID: PMC7391558 DOI: 10.1002/ece3.6472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non-native species co-occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co-occurring native Juncus pallidus and non-native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above- and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non-native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non-native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non-native linking the coevolved tolerance of those.
Collapse
Affiliation(s)
- Md. Nazim Uddin
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
- Department of Environmental ScienceSaitama UniversitySaitamaJapan
| | - Takashi Asaeda
- Department of Environmental ScienceSaitama UniversitySaitamaJapan
- Institute for Studies of the Global EnvironmentSophia UniversityChiyodaTokyoJapan
| | - Shahana H. Shampa
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
| | - Randall W. Robinson
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
| |
Collapse
|
5
|
Buisson E, Le Stradic S, Silveira FAO, Durigan G, Overbeck GE, Fidelis A, Fernandes GW, Bond WJ, Hermann JM, Mahy G, Alvarado ST, Zaloumis NP, Veldman JW. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol Rev Camb Philos Soc 2018; 94:590-609. [PMID: 30251329 DOI: 10.1111/brv.12470] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023]
Abstract
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open-canopy grassy woodlands) remains limited. To incorporate grasslands into large-scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved - frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human-caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species-diverse plant communities, including endemic species, are slow to recover. Complicating plant-community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re-establish. To guide restoration decisions, we draw on the old-growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old-growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old-growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.
Collapse
Affiliation(s)
- Elise Buisson
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Université d'Avignon et des Pays de Vaucluse, CNRS, IRD, Aix Marseille Université, Agroparc BP61207, Avignon 84911 cedex 9, France
| | - Soizig Le Stradic
- Gembloux Agro-Bio Tech, Biodiversity and Landscape unit, University of Liege, Gembloux 5030, Belgium.,Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Lab of Vegetation Ecology, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Fernando A O Silveira
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-901, Brazil
| | - Giselda Durigan
- Laboratório de Ecologia e Hidrologia Florestal, Floresta Estadual de Assis, Instituto Florestal, PO box 104, Assis, SP 19802-970, Brazil
| | - Gerhard E Overbeck
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Alessandra Fidelis
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Lab of Vegetation Ecology, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - G Wilson Fernandes
- Ecologia Evolutiva e Biodiversidade, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-901, Brazil
| | - William J Bond
- Department of Biological Sciences, University of Cape Town and South African Environmental Observation Network, NRF, Rondebosch, 7701, South Africa
| | - Julia-Maria Hermann
- Restoration Ecology, Center of Life and Food Sciences Weihenstephan, Technische Universität München - TUM, Freising, Germany
| | - Gregory Mahy
- Gembloux Agro-Bio Tech, Biodiversity and Landscape unit, University of Liege, Gembloux 5030, Belgium
| | - Swanni T Alvarado
- Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Departamento de Geografia, Ecosystem Dynamics Observatory, Av. 24A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Nicholas P Zaloumis
- Department of Botany, University of Cape Town, P/Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Joseph W Veldman
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, U.S.A
| |
Collapse
|