1
|
Mansour A, Kritsky DC. NEW INSIGHTS BASED ON MORPHOLOGICAL AND MOLECULAR DATA REVEAL THE TAXONOMIC STATUS OF HALIOTREMA PTEROISI (MONOGENOIDEA: DACTYLOGYRIDAE) INFECTING DEVIL FIREFISH PTEROIS MILES (PERCIFORMES: SCORPAENOIDEI: SCORPAENIDAE) IN THE RED SEA OFF EGYPT. J Parasitol 2024; 110:351-359. [PMID: 39106981 DOI: 10.1645/24-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
HALIOTREMA PTEROISI Paperna, 1972 (Monogenoidea: Dactylogyridae) was found parasitizing the gill lamellae of devil firefish, Pterois miles (Bennet) (Perciformes: Scorpaenidae), in the Red Sea off Safaga (26°44'N, 33°56'E), Egypt. The parasite species was described based on morphological features of available specimens and transferred to PlatycephalotremaKritsky and Nitta, 2019 (Dactylogyridae) as Platycephalotrema pteroisi (Paperna, 1972) n. comb. The occurrence of Pl. pteroisi off Safaga, Egypt, represented a range extension for the helminth of about 160 km to the southwest of the southern end of the Gulf of Aqaba. The transfer of the species to Platycephalotrema based on an evaluation of morphological features was supported by an analysis of molecular sequences of the 28S rDNA gene of Pl. pteroisi and 49 other dactylogyrid species. Maximum-likelihood, Bayesian inference, and maximum parsimony analyses of this dactylogyrid sequence data revealed H. pteroisi to nest with significant support within the clade of Platycephalotrema spp. During the literature review of dactylogyrid species infecting scorpionfishes, it was determined that Ancyrocephalus sp. of Dyer et al. from luna lion fish Pterois lunulata Temminck and Schlegel collected off Okinawa-jima, Japan represented an undescribed species of Platycephalotrema.
Collapse
Affiliation(s)
- Ali Mansour
- Department of Zoology, Faculty of Science, South Valley University, Qena, Qena Governorate 83523, Egypt
| | - Delane C Kritsky
- College of Health, Department of Community and Public Health, Campus Box 8090, Idaho State University, Pocatello, Idaho 83209
| |
Collapse
|
2
|
Kvach Y, Kutsokon Y, Bakuma A, Chebotar S, Demchenko V, Didenko A, Snigirov S, Yuryshynets V. Parasite and genetic diversity of big-scale sand smelt (Atherina boyeri Risso, 1810) populations in their natural and expansion ranges in Ukraine. Parasitol Res 2024; 123:154. [PMID: 38446231 DOI: 10.1007/s00436-024-08174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The big-scale sand smelt (Atherina boyeri) is an Atlanto-Mediterranean amphidromous fish species found within the Black Sea. Here, we assess differences in the parasite fauna of big-scale sand smelt populations from their natural range in the northwestern Black Sea and from their expansion range in the Lower and Middle River Dnipro. In addition, we undertook a microsatellite analysis to assess the genetic similarity of fish from the different locations. We found that the parasite community of fish in their natural range was wider than that from their expansion range. While the Gulf of Odesa was most distant from all other localities by parasite community composition and the Dnipro Reservoir was characterised by an absence of parasites (newest and most distant expansion locality), only fish from the Danube Delta showed a significant genetic difference. Our results suggest that the parasite community of big-scale sand smelt is primarily influenced by environmental factors, such as habitat type, water salinity and/or prey composition. Both microsatellite analysis and parasite community species composition (e.g. the presence of the marine Telosentis exiguus in the Kakhovka Reservoir and freshwater Raphidascaris sp. in the Gulf of Odesa) confirmed that populations in the River Dnipro reservoirs had, at some time, been connected with native marine populations, thus also confirming the species' amphidromous nature.
Collapse
Affiliation(s)
- Yuriy Kvach
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine.
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine.
| | - Yuliya Kutsokon
- Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, B. Khmelnytskoho St., 15, Kyiv, 01054, Ukraine
| | - Alla Bakuma
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
| | - Sabina Chebotar
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine
| | - Viktor Demchenko
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
| | - Alexander Didenko
- Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, B. Khmelnytskoho St., 15, Kyiv, 01054, Ukraine
- Institute of Fisheries, National Academy of Agrarian Science of Ukraine, Obukhivska St., 135, Kyiv, 03164, Ukraine
| | - Sergii Snigirov
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine
| | - Volodymyr Yuryshynets
- Institute of Hydrobiology, National Academy of Science of Ukraine, Volodymyra Ivasyuka Av., 12, Kyiv, 04210, Ukraine
| |
Collapse
|
3
|
Blackwood PE, Jonasen KL, Hoenig BD, Heil BN, Searle CL. Epidemics in native species influence the outcome of a species invasion. Oecologia 2024; 204:327-337. [PMID: 37620681 DOI: 10.1007/s00442-023-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Invasive species can have large effects on native communities. When native and invasive species share parasites, an epidemic in a native species could facilitate or inhibit the invasion. We sought to understand how the incidence and timing of epidemics in native species caused by a generalist parasite influenced the success and impact of an invasive species. We focused on North American native and invasive species of zooplankton (Daphnia dentifera and Daphnia lumholtzi, respectively), that can both become infected with a fungal parasite (Metschnikowia bicuspidata). In a laboratory microcosm experiment, we exposed the native species to varying parasite inocula (none, low, high) and two invasive species introduction times (before or during an epidemic in the native species). We found that the invasive species density in treatments with the parasite was higher compared to uninfected treatments, though only the early invasion, low-parasite and uninfected treatments exhibited significant pairwise differences. However, invasive resting eggs were only found in the uninfected treatments. The density of the native species was lowest with a combination of the parasite present, and the invasive species introduced during the epidemic. Native infection prevalence in these treatments (late invasion, parasite present) was also higher than prevalence in treatments where the invasive species was introduced before the epidemic. Therefore, the timing of an invasion relative to an epidemic can affect both the native and invasive species. Our results suggest that the occurrence and timing of epidemics in native species can influence the impacts of a species invasion.
Collapse
Affiliation(s)
- Paradyse E Blackwood
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA.
| | - Kacie L Jonasen
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Brandon D Hoenig
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Pymatuning Laboratory of Ecology, Linesville, PA, 16424, USA
| | - Brittany N Heil
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine L Searle
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Mowery MA, Arabesky V, Rozenberg T, Lubin Y, Segoli M. Invasive brown widow spiders avoid parasitism despite high densities. Oecologia 2023; 202:143-150. [PMID: 37160461 DOI: 10.1007/s00442-023-05378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Invasive species are sometimes less susceptible to natural enemies compared to native species, but the mechanism is often unclear. Here we tested two potential mechanisms for lower parasitism of invasive species: density-dependent parasitism and preference for human-dominated habitats. We investigated how variation in host density and habitat type affect egg sac parasitism in two widow spider species (family Theridiidae). We compared parasitism on the egg sac of the brown widow, Latrodectus geometricus, an urban invasive species, and the white widow, Latrodectus pallidus, a species native to Israel. To investigate variation in host and parasitoid density, we measured nearest-neighbor distance between spider webs and parasitism rates in 16 sites, and in a single site monthly throughout a year. In L. pallidus, denser sites were more heavily parasitized (up to 55%) and parasitism rate increased with population density throughout the season. Extremely dense L. geometricus populations, however, had very low rates of parasitism (0-5%). We then conducted an egg sac transplant experiment in human-dominated and natural habitats. We found no parasitism of either species in the human-dominated habitat, compared to 30% parasitism of both species in the natural habitat. In addition, we found evidence for higher predation of L. pallidus than of L. geometricus egg sacs, particularly in the natural habitat. These combined results suggest that the human-dominated habitats inhabited by L. geometricus have a lower abundance of predators and parasites. We conclude that lower parasitism and predation in human-dominated habitats could contribute to the invasion success of L. geometricus.
Collapse
Affiliation(s)
- Monica A Mowery
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel.
| | - Valeria Arabesky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Tamir Rozenberg
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Yael Lubin
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000, Midreshet Ben-Gurion, Israel
| |
Collapse
|
5
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Comparison of Whole Blood Fatty Acid Profiles between Lionfish (Pterois spp.) in Wild and Managed Care Environments. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Suboptimal nutrition may contribute to lionfish (Pterois volitans and Pterois miles) health issues in managed care environments. This study’s objective was to establish and compare whole blood fatty acid profiles in wild and aquarium lionfish. Whole blood samples were dried onto specialized high-quality paper cards from wild, invasive lionfish harvested off the North Carolina coast (n = 16) and lionfish managed by the North Carolina Aquariums (n = 12). Blood fatty acid profiles were analyzed from dried blood spots. Aquarium lionfish had significantly (p < 0.05) higher linoleic (18:2ω6) and eicosapentaenoic (20:5ω3) acid levels than wild lionfish. Similarly, aquarium lionfish had significantly (p < 0.05) lower saturated fatty acids and arachidonic (20:4ω6) to eicosapentaenoic acid (20:5ω3) ratios than wild lionfish. Total omega-3 and omega-6 fatty acids, as well as the ratio of these two fatty acid groups, were similar between wild and aquarium lionfish. Gut content analysis of wild lionfish diets included reef-dependent and schooling fish while aquarium lionfish diets were pelagic fish, crustaceans, mollusks, and commercial gel diets with nutrient supplements. This study reports whole blood fatty acid profiles in lionfish, providing comparative macronutrient data that may be useful for improving their nutrition and welfare in aquariums.
Collapse
|
7
|
Tuttle LJ, Lamb RW, Stringer AL. Differential learning by native versus invasive predators to avoid distasteful cleaning mutualists. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lillian J. Tuttle
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Hawai‘i Institute of Marine Biology School of Ocean and Earth Science and Technology University of Hawai‘i at Mānoa Kāne‘ohe HI USA
| | - Robert W. Lamb
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - Allison L. Stringer
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Montana Cooperative Fishery Research Unit Department of Ecology Montana State University Bozeman MT USA
| |
Collapse
|
8
|
Shodipo MO, Sikkel PC, Smit NJ, Hadfield KA. First record and molecular characterisation of two Gnathia species (Crustacea, Isopoda, Gnathiidae) from Philippine coral reefs, including a summary of all Central-Indo Pacific Gnathia species. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:355-367. [PMID: 33898237 PMCID: PMC8056128 DOI: 10.1016/j.ijppaw.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 11/26/2022]
Abstract
Due to their unusual life cycle that includes parasitic larval and free living adult stages, gnathiid isopods are typically overlooked in biodiversity surveys, even those that focus on parasites. While the Philippines sits within the region of highest marine biodiversity in the world, the coral triangle, no gnathiid species have been identified or described from that region. Here we present the first records of two gnathiid species collected from the Visayas, central Philippines: Gnathia malaysiensis Müller, 1993, previously described from Malaysia, and G. camuripenis Tanaka, 2004, previously described from southern Japan. This paper provides detailed morphological redescriptions, drawings and scanning electron microscope images as well as the first molecular characterisation of both species, Furthermore, a summary of the Central-Indo Pacific Gnathia species is provided. Morphological description of two gnathiid species collected from the central Philippines, along with molecular data, are presented. Gnathia malaysiensis was previously described from Malaysia and G. camuripenis was previously described from southern Japan. Although the Philippines is in the highly biodiverse coral triangle, this is the first gnathiid description from this region. The wide geographic range of G. camuripenis suggests dispersal via large, highly mobile fishes, and/or tropical cyclones.
Collapse
Affiliation(s)
- Mary O Shodipo
- Institute of Environmental and Marine Sciences, Silliman University, Dumaguete City, 6200, Negros Oriental, Philippines
| | - Paul C Sikkel
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, PO Box 599, State University, Jonesboro, AR, 72467, USA.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Kerry A Hadfield
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
9
|
Association between temporal patterns in helminth assemblages and successful range expansion of exotic Mus musculus domesticus in Senegal. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Claar DC, Wood CL. Pulse Heat Stress and Parasitism in a Warming World. Trends Ecol Evol 2020; 35:704-715. [PMID: 32439076 DOI: 10.1016/j.tree.2020.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/15/2023]
Abstract
Infectious disease outbreaks emerged across the globe during the recent 2015-2016 El Niño event, re-igniting research interest in how climate events influence disease dynamics. While the relationship between long-term warming and the transmission of disease-causing parasites has received substantial attention, we do not yet know how pulse heat events - common phenomena in a warming world - will alter parasite transmission. The effects of pulse warming on ecological and evolutionary processes are complex and context dependent, motivating research to understand how climate oscillations drive host health and disease. Here, we develop a framework for evaluating and predicting the effects of pulse warming on parasitic infection. Specifically, we synthesize how pulse heat stress affects hosts, parasites, and the ecological interactions between them.
Collapse
Affiliation(s)
- Danielle C Claar
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA; NOAA Climate and Global Change Postdoctoral Scholar, Boulder, CO 80301, USA.
| | - Chelsea L Wood
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA
| |
Collapse
|
11
|
Precipitous Declines in Northern Gulf of Mexico Invasive Lionfish Populations Following the Emergence of an Ulcerative Skin Disease. Sci Rep 2020; 10:1934. [PMID: 32020056 PMCID: PMC7000744 DOI: 10.1038/s41598-020-58886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/22/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016–2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77–79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.
Collapse
|
12
|
Dactylogyrids (Platyhelminthes: Monogenoidea) Infecting the Gill Lamellae of Flatheads (Scorpaeniformes: Platycephalidae), with Proposal of Platycephalotrema n. gen. and Descriptions of New Species from Australia and Japan. DIVERSITY 2019. [DOI: 10.3390/d11080132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platycephalotrema n. gen. (Dactylogyridae) is proposed for four new species and 5 previously described species parasitizing the gills of flatheads (Scorpaeniformes: Platycephalidae) as follows: Platycephalotrema ogawai n. sp. (type species) from Platycephalus sp. 1 (type host) and Platycephalus sp. 2, both of Nakabo & Kai (2013) (locally known as “Yoshino-gochi” and “Ma-gochi,” respectively) (Japan); Platycephalotrema austrinum n. sp. from Platycephalus endrachtensis Quoy & Gaimard (type host) and Platycephalus sp. (Australia); Platycephalotrema bassensis (Hughes, 1928) n. comb. from Platycephalus bassensis Cuvier (Australia); Platycephalotrema koppa n. sp. from Platycephalus fuscus Cuvier (Australia); Platycephalotrema macassarensis (Yamaguti, 1963) n. comb. from Platycephalus indicus (Linnaeus) (China, Macassar); Platycephalotrema mastix n. sp. from P. fuscus and P. endrachtensis (Australia); Platycephalotrema platycephali (Yin & Sproston, 1948) n. comb. from P. indicus (China) and P. fuscus (Australia); Platycephalotrema sinensis (Yamaguti, 1963) n. comb. from Cociella punctata (Cuvier) (China); Platycephalotrema thysanophrydis (Yamaguti, 1937) n. comb. from Inegocia japonica (Cuvier), Inegocia ochiaii Imamura, and Cociella crocodilus (Cuvier) (Japan, China). Other species requiring further study but potentially members of Platycephalotrema include Ancyrocephalus vesiculosus Murray, 1931, Haliotrema indicum Tripathi, 1957, Haliotrema swatowensis Yao, Wang, Xia, & Chen, 1998, and Haliotrema pteroisi Paperna, 1972. The primary features differentiating Platycephalotrema include species having: (1) tandem gonads (testis postgermarial); (2) two prostatic reservoirs, each emptying independently into the base of the male copulatory organ; (3) a dextral vaginal pore and large vaginal vestibule; (4) dorsal and ventral pairs of morphologically similar anchors; (5) a ventral bar with spatulate ends; (6) a dorsal bar with bifurcated ends, and (7) absence of an accessory piece. The new species are described, and P. thysanophrydis is redescribed based on newly collected and museum specimens.
Collapse
|
13
|
Ancillotto L, Studer V, Howard T, Smith VS, McAlister E, Beccaloni J, Manzia F, Renzopaoli F, Bosso L, Russo D, Mori E. Environmental drivers of parasite load and species richness in introduced parakeets in an urban landscape. Parasitol Res 2018; 117:3591-3599. [PMID: 30167793 DOI: 10.1007/s00436-018-6058-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
Abstract
Introduced species represent a threat to native wildlife worldwide, due to predation, competition, and disease transmission. Concurrent introduction of parasites may also add a new dimension of competition, i.e. parasite-mediated competition, through spillover and spillback dynamics. Urban areas are major hotspots of introduced species, but little is known about the effects of urban habitat structure on the parasite load and diversity of introduced species. Here, we investigated such environmental effects on the ectoparasite load, richness, and occurrence of spillback in two widespread invasive parakeets, Psittacula krameri and Myiopsitta monachus, in the metropolitan area of Rome, central Italy. We tested 231 parakeets and found that in both species parasite load was positively influenced by host abundance at local scale, while environmental features such as the amount of natural or urban habitats, as well as richness of native birds, influenced parasite occurrence, load, and richness differently in the two host species. Therefore, we highlight the importance of host population density and habitat composition in shaping the role of introduced parakeets in the spread of both native and introduced parasites, recommending the monitoring of urban populations of birds and their parasites to assess and manage the potential occurrence of parasite-mediated competition dynamics as well as potential spread of vector-borne diseases.
Collapse
Affiliation(s)
- L Ancillotto
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Naples, Italy
| | - V Studer
- Centro Recupero Fauna Selvatica Lipu Roma, Rome, Italy
| | - T Howard
- Department of Life Sciences, Natural History Museum of London, London, UK
| | - V S Smith
- Department of Life Sciences, Natural History Museum of London, London, UK
| | - E McAlister
- Department of Life Sciences, Natural History Museum of London, London, UK
| | - J Beccaloni
- Department of Life Sciences, Natural History Museum of London, London, UK
| | - F Manzia
- Centro Recupero Fauna Selvatica Lipu Roma, Rome, Italy
| | - F Renzopaoli
- Centro Recupero Fauna Selvatica Lipu Roma, Rome, Italy
| | - L Bosso
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Naples, Italy
| | - D Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Naples, Italy. .,School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - E Mori
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P.A. Mattioli 4, 53100, Siena, Italy.,Accademia Nazionale dei Lincei, Palazzo Corsini, Via della Lungara 10, 00165, Rome, Italy
| |
Collapse
|
14
|
Searle CL, Hochstedler BR, Merrick AM, Ilmain JK, Wigren MA. High resources and infectious disease facilitate invasion by a freshwater crustacean. Oecologia 2018; 188:571-581. [PMID: 30088085 DOI: 10.1007/s00442-018-4237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023]
Abstract
It is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species. In a microcosm experiment simulating an invasion, we found that the invasive species reached its highest densities when there was a combination of both high resources and the presence of a shared parasite, but not for each of these conditions alone (i.e., a significant resource x parasite interaction). This result can be explained by changes in native host population density; high resource levels initially led to an increase in the density of the native host, which caused larger epidemics when the parasite was present. This high infection prevalence caused a subsequent reduction in native host density, increasing available resources and allowing the invasive species to establish relatively dense populations. Thus, in this system, native communities with a combination of high resource levels and parasitism may be the most vulnerable to invasions. More generally, our results suggest that parasitism and resource availability can have interactive, non-additive effects on the outcome of invasions.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| | - Baylie R Hochstedler
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Abigail M Merrick
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Juliana K Ilmain
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Maggie A Wigren
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Genotyping confirms significant cannibalism in northern Gulf of Mexico invasive red lionfish, Pterois volitans. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1791-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|