1
|
Ferreira RB, Parreira MR, de Arruda FV, Falcão MJA, de Freitas Mansano V, Nabout JC. Combining ecological niche models with experimental seed germination to estimate the effect of climate change on the distribution of endangered plant species in the Brazilian Cerrado. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:283. [PMID: 35294661 DOI: 10.1007/s10661-022-09897-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Predicting the geographic distribution of plants that provide ecosystem services is essential to understand the adaptation of communities and conserve that group toward climate change. Predictions can be more accurate if changes in physiological characteristics of species due to those changes are included. Thus, we aimed to evaluate the impacts of climate change on the different hierarchical levels of Apuleia leiocarpa (Vogel) J. F. Macbr. (Fabaceae). Therefore, we experimentally evaluate the effect of different temperatures on the initial development (vigor) and estimate the impact of climate change on the potential geographic distribution of the species, using ecological niche approaches. For the experiment, we used 11 temperature intervals of 2 °C ranging from 21 to 41 °C. We used ecological niche modeling techniques (ENM) to predict the species' environmental suitability in future climate scenarios. The association between the experiment and niche models was obtained by testing the relationships of temperature increase on the species vigor and geographic distribution. This conceptual model to determine the direct and indirect effects of temperature was generated using the methodological framework of structural equation models. The experiment showed that the seeds had the highest growth at 31 °C. ENMs indicated that due to climate change, there is a tendency for the plant to migrate to regions with milder temperatures. However, such regions may be unsuitable for the plant since they do not have ideal temperatures to germinate, which may cause a drastic reduction in their availability in a future climate change scenario. The inclusion of seed germination through experimental research allowed us to detect an area that is less suitable for germination despite being climatically suitable for the species. Thus, research that integrates the effect of climate on the different stages of the organism's development is essential to understand the impact of climate change on biodiversity.
Collapse
Affiliation(s)
- Rafael Batista Ferreira
- Universidade Estadual de Goiás, Fazenda Barreiro Do Meio, Campus Central, BR 153, Anápolis, Goiás, 310575132-400, Brazil.
- Faculdade Metropolitana de Anápolis, Av. Fernando Costa 49 - Vila Jaiara St. Norte, Anápolis, Goiás, 75064-780, Brazil.
| | - Micael Rosa Parreira
- Universidade Federal de Goiás, Chácaras de Recreio Samambaia, Campus Samambaia, Av. Esperança, s/n, Goiânia, Goiás, 74690-900, Brazil
| | - Filipe Viegas de Arruda
- Universidade Estadual de Goiás, Fazenda Barreiro Do Meio, Campus Central, BR 153, Anápolis, Goiás, 310575132-400, Brazil
- Instituto de Pesquisa Ambiental da Amazônia, Asa Norte CLN 211, BL B Sala 201, Brasília, Distrito Federal, 70863-520, Brazil
| | - Marcus J A Falcão
- Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro, DIPEQ. Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Vidal de Freitas Mansano
- Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro, DIPEQ. Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil
| | - João Carlos Nabout
- Universidade Estadual de Goiás, Fazenda Barreiro Do Meio, Campus Central, BR 153, Anápolis, Goiás, 310575132-400, Brazil
| |
Collapse
|
2
|
The Global Potential Distribution of Invasive Plants: Anredera cordifolia under Climate Change and Human Activity Based on Random Forest Models. SUSTAINABILITY 2020. [DOI: 10.3390/su12041491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.
Collapse
|
3
|
Destro GFG, de Fernandes V, de Andrade AFA, De Marco P, Terribile LC. Back home? Uncertainties for returning seized animals to the source-areas under climate change. GLOBAL CHANGE BIOLOGY 2019; 25:3242-3253. [PMID: 31306533 DOI: 10.1111/gcb.14760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/01/2019] [Indexed: 06/10/2023]
Abstract
Regardless of the economic, social and environmental impacts caused by wild animal trafficking worldwide, the suitable destination of seized specimens is one of the main challenges faced by environmental managers and authorities. In Brazil, returning seized animals to the wild has been the most frequent path in population restoration programs, and has been carried out, as a priority, in areas where the animals were captured. However, in addition to the difficulty in identifying the locations of illegal captures, little scientific knowledge is available on the future viability of the source-areas to global climate change. Thus, the current work aims to evaluate the impacts of climate change on the main source-municipalities for animal trafficking in Brazil, referred to herein as source-areas. For this, using ecological niche modeling, the environmental suitability of the source-areas for illegal animal captures was evaluated in two scenarios at two different time horizons: optimistic (RCP 26) and pessimistic (RCP 85) emission scenarios in both 2050 and 2070 projections. Moreover, the source-areas were compared with the Brazilian Federal protected areas, used here as the control group. According to the results, Brazilian source-municipalities are not always the best option for maintaining the most seized species in the future simulations, and, therefore, seem not be the best option for projects that aim for the return of these animals to the wild. In this sense, despite the genetic and ecological issues inherent in translocation projects, our results suggest that population restoration programs for seized species need to be rethought, and furthermore other suitable areas could be considered for truly ensuring the survival and maintenance of overexploited populations in the long term.
Collapse
Affiliation(s)
- Guilherme Fernando Gomes Destro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Goiânia, Brazil
| | - Virgínia de Fernandes
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Paulo De Marco
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
4
|
Simões SDS, Zappi D, Costa GMD, de Oliveira G, Aona LYS. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: Past, present and future. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Silvana dos Santos Simões
- Programa de mestrado em Recursos Genéticos Vegetais; Universidade Federal do Recôncavo da Bahia - UFRB; Cruz das Almas Brazil
- Centro de Ciências Agrárias, Ambientais e Biológicas; Universidade Federal do Recôncavo da Bahia - UFRB; Rua Rui Barbosa, 710, Centro Cruz das Almas 44380-000 Brazil
| | - Daniela Zappi
- Instituto Tecnológico Vale/Museu Paraense Emilio Goeldi - Coord. Botânica; Belém Brazil
| | - Grênivel Mota da Costa
- Centro de Ciências Agrárias, Ambientais e Biológicas; Universidade Federal do Recôncavo da Bahia - UFRB; Rua Rui Barbosa, 710, Centro Cruz das Almas 44380-000 Brazil
| | - Guilherme de Oliveira
- Centro de Ciências Agrárias, Ambientais e Biológicas; Universidade Federal do Recôncavo da Bahia - UFRB; Rua Rui Barbosa, 710, Centro Cruz das Almas 44380-000 Brazil
| | - Lidyanne Yuriko Saleme Aona
- Centro de Ciências Agrárias, Ambientais e Biológicas; Universidade Federal do Recôncavo da Bahia - UFRB; Rua Rui Barbosa, 710, Centro Cruz das Almas 44380-000 Brazil
| |
Collapse
|