1
|
Gunji M, Taewcharoen N, Yamada F, Sherratt E. Does fast running limit numerical variability of the vertebral column in rabbits and hares (Leporidae: Lagomorpha)? ROYAL SOCIETY OPEN SCIENCE 2025; 12:241813. [PMID: 39881789 PMCID: PMC11774590 DOI: 10.1098/rsos.241813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025]
Abstract
In mammalian vertebral columns, locomotive ability is expected to be an evolutionary driver of variation in the number of vertebrae; in species evolved to run fast or have a flexible vertebral column, they generally have limited numerical variation and low occurrence of malformed vertebrae to maintain their running performance. Although this hypothesis is supported among species sharing similar locomotive constraints (e.g. dorsomobile versus dorsostable species), whether it applies at the within-species level is unknown. We test this hypothesis using species of Leporidae (rabbits and hares) with different locomotive abilities: we examined the number of presacral vertebrae and the frequency of abnormalities in 504 specimens from 4 species, representing cursorial, saltatorial and generalist modes. Our results show that the cursorial leporids had the lowest numerical variability and fewest abnormalities within species, although this was not statistically different from saltatorial or generalist species. We also identified 11 conditions of vertebral abnormality previously unexplored and theorize that each may pose different degrees of locomotive impairment and effects on species' fitness. The lack of statistical support for the hypothesis at a finer phylogenetic level suggests further research is needed to understand whether numerical variability is under stabilizing selection or a developmental response to locomotive constraints in cursorial animals.
Collapse
Affiliation(s)
- Megu Gunji
- Department of Life Sciences, Faculty of Life Sciences, Toyo University, Saitama351-0007, Japan
| | - Nuttakorn Taewcharoen
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Fumio Yamada
- Okinawa University, Kokuba 555, Naha, Okinawa902-0075, Japan
- Amami Rabbit Museum QuruGuru, Mahoroba Park, Yamato, Kagoshima894-3104, Japan
| | - Emma Sherratt
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia5005, Australia
| |
Collapse
|
2
|
Peacock DE, Iannella A, Sinclair RG, Kovaliski J. Surveillance of Wildlife Viruses: Insights from South Australia's Monitoring of Rabbit Haemorrhagic Disease Virus (RHDV GI.1 and GI.2). Viruses 2024; 16:1553. [PMID: 39459889 PMCID: PMC11512407 DOI: 10.3390/v16101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Surveillance of wildlife virus impacts can be passive or active. Both approaches have their strengths and weaknesses, especially regarding cost and knowledge that can be gained. Monitoring of rabbit haemorrhagic disease virus (GI.1 and GI.2) in South Australia has utilised both strategies and their methods and gained insights are discussed. Active strategies to monitor the continuing impact of rabbit haemorrhagic disease virus 2 (GI.2) on susceptible lagomorphs in countries such as the USA, Mexico, South Africa, Spain, France and Portugal are encouraged to gain critical insights into the evolution, spread and impact of this virus. Furthermore, there are lessons here for the international monitoring of diseases in wildlife, particularly where there is a risk of them becoming zoonotic.
Collapse
Affiliation(s)
- David E. Peacock
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Amy Iannella
- Foundation for Rabbit Free Australia, P.O. Box 145, Collinswood, Adelaide, SA 5081, Australia
| | - Ron G. Sinclair
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - John Kovaliski
- Independent Researcher, 6/43B Bridge Street Kensington, Kensington, SA 5068, Australia
| |
Collapse
|
3
|
Bouhali A, Homrani A, Ferrand N, Lopes S, Emam AM. Assessment of genetic diversity among native Algerian rabbit populations using microsatellite markers. Arch Anim Breed 2023; 66:207-215. [PMID: 37560355 PMCID: PMC10407306 DOI: 10.5194/aab-66-207-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Having higher adaptability against abiotic stress, which is characterized in rural areas in developing countries, local farm animal genetic resources (FAGRs) are increasingly precarious for random and unsystematic crossing with exotic breeds. In this study, 85 microsatellite loci were utilized to assess genetic diversity among native Algerian rabbits (NARs) sampled from an area of 753 km (from north to south) and 919 km (from east to west). Those distances covered 25 significant geographical points in seven rural areas (El Taref, Mostaganem, Sidi Bel Abbès, M'Sila, Dar Chioukh, Faidh El Botma, and Laghouat). A total of 558 alleles were observed in this study. The highest genetic diversity was registered in the southern direction among NAR populations. The mean number of alleles per locus (MNa) and the inbreeding coefficient (F IS ) were highest in Laghouat (4.482 and 0.232), while they were lowest in El Taref (4.000 and 0.149). In the current study, the number of private alleles (Pa) ranged from 9 to 23. In addition, the average of observed heterozygosity (0.427) was lower than the expected value (0.524) due to high levels of inbreeding. The discriminant analysis of principal components (DAPC), the neighbor-joining tree (NJ), and the analysis of STRUCTURE software confirmed the classification of populations according to geographical zones into four main groups (east, west, south, and middle). The results of the current study are useful for breeding improvement and conservation plan research in relation to local animal genetic resources in Algeria.
Collapse
Affiliation(s)
- Abdelbaki Bouhali
- Laboratory of Sciences and Technics for Animal Production (LSTAP),
Department of Agronomic Sciences, Faculty of Nature Sciences and Life,
Abdelhamid Ibn Badis Mostaganem University, Mostaganem, Algeria
- École Normale Supérieur Taleb abderrahmane Laghouat, Laghouat,
4033, Algeria
| | - Abdelkader Homrani
- Laboratory of Sciences and Technics for Animal Production (LSTAP),
Department of Agronomic Sciences, Faculty of Nature Sciences and Life,
Abdelhamid Ibn Badis Mostaganem University, Mostaganem, Algeria
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos
Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661,
Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciencias, Universidade do
Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Susana Lopes
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos
Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661,
Vairão, Portugal
| | - Ahmed Mostafa Emam
- Animal Production Research Institute, Agricultural Research Centre,
Ministry of Agriculture, Nadi El Saiid street, 12618, Dokkii, Giza, Egypt
| |
Collapse
|
4
|
Wang X, Peischl S, Heckel G. Demographic history and genomic consequences of 10,000 generations of isolation in a wild mammal. Curr Biol 2023; 33:2051-2062.e4. [PMID: 37178689 DOI: 10.1016/j.cub.2023.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Increased human activities caused the isolation of populations in many species-often associated with genetic depletion and negative fitness effects. The effects of isolation are predicted by theory, but long-term data from natural populations are scarce. We show, with full genome sequences, that common voles (Microtus arvalis) in the Orkney archipelago have remained genetically isolated from conspecifics in continental Europe since their introduction by humans over 5,000 years ago. Modern Orkney vole populations are genetically highly differentiated from continental conspecifics as a result of genetic drift processes. Colonization likely started on the biggest Orkney island and vole populations on smaller islands were gradually split off, without signs of secondary admixture. Despite having large modern population sizes, Orkney voles are genetically depauperate and successive introductions to smaller islands resulted in further reduction of genetic diversity. We detected high levels of fixation of predicted deleterious variation compared with continental populations, particularly on smaller islands, yet the fitness effects realized in nature are unknown. Simulations showed that predominantly mildly deleterious mutations were fixed in populations, while highly deleterious mutations were purged early in the history of the Orkney population. Relaxation of selection overall due to benign environmental conditions on the islands and the effects of soft selection may have contributed to the repeated, successful establishment of Orkney voles despite potential fitness loss. Furthermore, the specific life history of these small mammals, resulting in relatively large population sizes, has probably been important for their long-term persistence in full isolation.
Collapse
Affiliation(s)
- Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
A single introduction of wild rabbits triggered the biological invasion of Australia. Proc Natl Acad Sci U S A 2022; 119:e2122734119. [PMID: 35994668 PMCID: PMC9436340 DOI: 10.1073/pnas.2122734119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological invasions are a major cause of environmental and economic disruption. While ecological factors are key determinants of their success, the role of genetics has been more challenging to demonstrate. The colonization of Australia by the European rabbit is one of the most iconic and devastating biological invasions in recorded history. Here, we show that despite numerous introductions over a 70-y period, this invasion was triggered by a single release of a few animals that spread thousands of kilometers across the continent. We found genetic support for historical accounts that these were English rabbits imported in 1859 by a settler named Thomas Austin and traced the origin of the invasive population back to his birthplace in England. We also find evidence of additional introductions that established local populations but have not spread geographically. Combining genomic and historical data we show that, contrary to the earlier introductions, which consisted mostly of domestic animals, the invasive rabbits had wild ancestry. In New Zealand and Tasmania, rabbits also became a pest several decades after being introduced. We argue that the common denominator of these invasions was the arrival of a new genotype that was better adapted to the natural environment. These findings demonstrate how the genetic composition of invasive individuals can determine the success of an introduction and provide a mechanism by which multiple introductions can be required for a biological invasion.
Collapse
|
6
|
Peacock D, Croxford A, Iannella A, Kovaliski J, Lavazza A, Cooke B, Spratt D, Strive T, Taggart D, Campbell S, Robinson S, Sawyers E. Using genetic analysis to determine the distribution, prevalence and diversity of Eimeria species in pest rabbits (Oryctolagus cuniculus) in Australia. Parasitol Int 2022; 91:102642. [DOI: 10.1016/j.parint.2022.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
7
|
Wu D, Lao S, Fan L. De-Domestication: An Extension of Crop Evolution. TRENDS IN PLANT SCIENCE 2021; 26:560-574. [PMID: 33648850 DOI: 10.1016/j.tplants.2021.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
De-domestication or feralization is an interesting phenomenon in crops and livestock. Previously, evidence for crop de-domestication was based mainly on studies using phenotypic and genotypic data from limited molecular markers or gene segments. Recent genomic studies in rice, barley, and wheat provide comprehensive landscapes of de-domestication on a whole-genome scale. Here, we summarize crop de-domestication processes, ecological roles of de-domesticates, mechanisms underlying crop de-domestication syndromes, and conditions potentially favoring de-domestication events. We further explain how recent de-domestication studies have expanded our understanding of the complexity of crop evolution, and highlight the genetic novelties of de-domesticates beneficial for modern crop breeding.
Collapse
Affiliation(s)
- Dongya Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sangting Lao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Yonyou Industrial Park, Sanya 572025, China.
| |
Collapse
|
8
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
9
|
Elfekih S, Metcalfe S, Walsh TK, Cox TE, Strive T. Genomic insights into a population of introduced European rabbits Oryctolagus cuniculus in Australia and the development of genetic resistance to rabbit hemorrhagic disease virus. Transbound Emerg Dis 2021; 69:895-902. [PMID: 33560563 DOI: 10.1111/tbed.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is one of the most devastating invasive species in Australia. Since the 1950s, myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV) have been used to manage overabundant rabbit populations. Resistance to MYXV was observed within a few years of the release. More recently, resistance to lethal RHDV infection has also been reported, undermining the efficiency of landscape-scale rabbit control. Previous studies suggest that genetic resistance to lethal RHDV infection may differ locally between populations, yet the mechanisms of genetic resistance remain poorly understood. Here, we used genotyping by sequencing (GBS) data representing a reduced representation of the genome, to investigate Australian rabbit populations. Our aims were to understand the relationship between populations and identify possible genomic signatures of selection for RHDV resistance. One population we investigated had previously been reported to show levels of resistance to lethal RHDV infection. This population was compared to three other populations with lower or no previously reported RHDV resistance. We identified a set of novel candidate genes that could be involved in host-pathogen interactions such as virus binding and infection processes. These genes did not overlap with previous studies on RHDV resistance carried out in different rabbit populations, suggesting that multiple mechanisms are feasible. These findings provide useful insights into the different potential mechanisms of genetic resistance to RHDV virus which will inform future functional studies in this area.
Collapse
Affiliation(s)
- Samia Elfekih
- Australian Centre for Disease Preparedness-ACDP, CSIRO Health & Biosecurity, East Geelong, VIC, Australia.,Bio21 Institute and the School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tom K Walsh
- Black Mountain Labs, CSIRO Land & Water, Canberra, ACT, Australia
| | - Tarnya E Cox
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Tanja Strive
- Black Mountain Labs, CSIRO Health & Biosecurity, Canberra, ACT, Australia.,Centre for Invasive Species Solutions, Canberra, ACT, Australia
| |
Collapse
|
10
|
Schwensow N, Pederson S, Peacock D, Cooke B, Cassey P. Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Mol Ecol 2020; 29:3777-3794. [PMID: 32506669 DOI: 10.1111/mec.15498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.
Collapse
Affiliation(s)
- Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - David Peacock
- Biosecurity SA, Adelaide, SA, Australia.,School of Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, Australia
| | - Brian Cooke
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
11
|
Gering E, Incorvaia D, Henriksen R, Conner J, Getty T, Wright D. Getting Back to Nature: Feralization in Animals and Plants. Trends Ecol Evol 2019; 34:1137-1151. [PMID: 31488326 PMCID: PMC7479514 DOI: 10.1016/j.tree.2019.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Formerly domesticated organisms and artificially selected genes often escape controlled cultivation, but their subsequent evolution is not well studied. In this review, we examine plant and animal feralization through an evolutionary lens, including how natural selection, artificial selection, and gene flow shape feral genomes, traits, and fitness. Available evidence shows that feralization is not a mere reversal of domestication. Instead, it is shaped by the varied and complex histories of feral populations, and by novel selection pressures. To stimulate further insight we outline several future directions. These include testing how 'domestication genes' act in wild settings, studying the brains and behaviors of feral animals, and comparative analyses of feral populations and taxa. This work offers feasible and exciting research opportunities with both theoretical and practical applications.
Collapse
Affiliation(s)
- Eben Gering
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Davie, FL, USA.
| | - Darren Incorvaia
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Rie Henriksen
- IIFM Biology and AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jeffrey Conner
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; Kellogg Biological Station and Dept. of Plant Biology, Michigan State University, Hickory Corners, MI, USA
| | - Thomas Getty
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Dominic Wright
- IIFM Biology and AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|