1
|
Santoianni LA, Innangi M, Varricchione M, Carboni M, La Bella G, Haider S, Stanisci A. Ecological features facilitating spread of alien plants along Mediterranean mountain roads. Biol Invasions 2024; 26:3879-3899. [PMID: 39324107 PMCID: PMC11420372 DOI: 10.1007/s10530-024-03418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024]
Abstract
Invasive alien species represent a major threat to global biodiversity and the sustenance of ecosystems. Globally, mountain ecosystems have shown a degree of resistance to invasive species due to their distinctive ecological features. However, in recent times, the construction of linear infrastructure, such as roads, might weaken this resistance, especially in the Mediterranean basin region. Roads, by acting as efficient corridors, facilitate the dispersal of alien species along elevation gradients in mountains. Here, we investigated how the ecological features and road-associated disturbance in native plant communities affected both the occurrence and cover of alien plant species in Central Apennines (Italy). We implemented the MIREN road survey in three mountain transects conducting vegetation sampling in plots located both adjacent to and distant from the roads at intervals of ~ 100 m in elevation. We then used community-weighted means of Ecological Indicator Values for Europe together with Disturbance Indicator Values applied to plant species of native communities as predictors of alien species occurrence and cover in a machine-learning classification and regression framework. Our analyses showed that alien species' occurrence was greater in proximity to the road where high soil disturbance occurred and in warm- and light-adapted native communities. On the other hand, alien species cover was more strongly related to moderate grazing pressure and the occurrence of nitrophilic plant communities. These findings provide a baseline for the current status of alien plant species in this Mediterranean mountain region, offering an ecological perspective to address the challenges associated with their management under global change. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03418-y.
Collapse
Affiliation(s)
| | - Michele Innangi
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
| | - Marco Varricchione
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Marta Carboni
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Angela Stanisci
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Wu H, Liu Y, Zhang T, Xu M, Rao B. Impacts of Soil Properties on Species Diversity and Structure in Alternanthera philoxeroides-Invaded and Native Plant Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1196. [PMID: 38732411 PMCID: PMC11085794 DOI: 10.3390/plants13091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon-Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou 450046, China
- Xinyang Academy of Ecological Research, Xinyang 464000, China
- Dabie Mountain Laboratory, Xinyang 464000, China
| | - Yuxin Liu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Tiantian Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Mingxia Xu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Benqiang Rao
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
- Dabie Mountain Laboratory, Xinyang 464000, China
| |
Collapse
|
3
|
Mousavi SA, Ramula S. The invasive legume Lupinus polyphyllus has minor site-specific impacts on the composition of soil bacterial communities. Ecol Evol 2024; 14:e11030. [PMID: 38357596 PMCID: PMC10864723 DOI: 10.1002/ece3.11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.
Collapse
Affiliation(s)
| | - Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
4
|
The relationship between Invasive Alien Solanum elaeagnifolium Cav. characters and impacts in different habitats. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractInvasive alien plants are one of the most serious threats to agriculture. The growth traits of Solanum elaeagnifolium Cav. in crops and their demographics in invaded vs non-invaded communities were examined. The majority of S. elaeagnifolium germination was observed in the spring compared to the summer. Five stages were distinguished, which started with a short time of seedling and juvenile stages, extended flowering, and fruiting stages, and seed dispersion in the winter season. An increase in shoots/roots ratio, leaf area ratio and leaf mass fraction during growth with the varied rate was proved. The accumulation coefficient of dry mass exceeded 0.93 and was significant (P > 0.001) with great variability within plant parts, and stage intervals. While the high growth rate is influenced by the stages and habitats. The recipient communities are affected negatively by S. elaeagnifolium invasion which is associated with lower diversity, richness, and evenness vs non-invaded communities. High similarities were found in the invaded area and communities. Finally, high and varied growth and plasticity of S. elaeagnifolium characterized their invasion behavior via different habitats. There were suitable determinants indices of diversity that can be used in the comparison between invaded and non-invaded communities. This knowledge may be useful for use in agro-environment protection and to improve the management methods of invasive alien species.
Collapse
|
5
|
Ludewig K, Klinger YP, Donath TW, Bärmann L, Eichberg C, Thomsen JG, Görzen E, Hansen W, Hasselquist EM, Helminger T, Kaiskog F, Karlsson E, Kirchner T, Knudsen C, Lenzewski N, Lindmo S, Milberg P, Pruchniewicz D, Richter E, Sandner TM, Sarneel JM, Schmiede R, Schneider S, Schwarz K, Tjäder Å, Tokarska-Guzik B, Walczak C, Weber O, Żołnierz L, Eckstein RL. Phenology and morphology of the invasive legume Lupinus polyphyllus along a latitudinal gradient in Europe. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.89673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant phenology, i. e. the timing of life cycle events, is related to individual fitness and species distribution ranges. Temperature is one of the most important drivers of plant phenology together with day length. The adaptation of their phenology may be important for the success of invasive plant species. The present study aims at understanding how the performance and the phenology of the invasive legume Lupinus polyphyllus vary with latitude. We sampled data across a >2000 km latitudinal gradient from Central to Northern Europe. We quantified variation in phenology of flowering and fruiting of L. polyphyllus using >1600 digital photos of inflorescences from 220 individual plants observed weekly at 22 sites. The day of the year at which different phenological phases were reached, increased 1.3–1.8 days per degree latitude, whereas the growing degree days (gdd) required for these phenological phases decreased 5–16 gdd per degree latitude. However, this difference disappeared, when the day length of each day included in the calculation of gdd was considered. The day of the year of the earliest and the latest climatic zone to reach any of the three studied phenological phases differed by 23–30 days and temperature requirements to reach these stages differed between 62 and 236 gdd. Probably, the invasion of this species will further increase in the northern part of Europe over the next decades due to climate warming. For invasive species control, our results suggest that in countries with a large latitudinal extent, the mowing date should shift by ca. one week per 500 km at sites with similar elevations.
Collapse
|
6
|
Hansen W, Klinger YP, Otte A, Eckstein RL, Ludewig K. Constraints in the restoration of mountain meadows invaded by the legume
Lupinus polyphyllus. Restor Ecol 2022. [DOI: 10.1111/rec.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wiebke Hansen
- Institute of Landscape Ecology and Resource Management, Research Centre for Biosystems, Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Heinrich‐Buff‐Ring 26‐32, DE‐35392 Giessen Germany
| | - Yves P. Klinger
- Institute of Landscape Ecology and Resource Management, Research Centre for Biosystems, Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Heinrich‐Buff‐Ring 26‐32, DE‐35392 Giessen Germany
| | - Annette Otte
- Institute of Landscape Ecology and Resource Management, Research Centre for Biosystems, Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Heinrich‐Buff‐Ring 26‐32, DE‐35392 Giessen Germany
| | - Rolf Lutz Eckstein
- Department of Environmental and Life Sciences – Biology Karlstad University Universitetsgatan 2, SE‐65188 Karlstad Sweden
| | - Kristin Ludewig
- Faculty of Mathematics, Informatics and Natural Sciences, Department Biology, Institute of Plant Science and Microbiology, Applied Plant Ecology, Ohnhorststr. 18 University Hamburg DE‐22609 Hamburg Germany
| |
Collapse
|
7
|
The invasive herb Lupinus polyphyllus can reduce plant species richness independently of local invasion age. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe ecological impacts of invasive species may change or accumulate with time since local invasion, potentially inducing further changes in communities and the abiotic environment. Yet, time since invasion is rarely considered when investigating the ecological impacts of invasive non-native species. To examine the effect of time since invasion on the ecological impacts of Lupinus polyphyllus, a perennial nitrogen-fixing herb, we surveyed vascular plant communities in the presence and absence of L. polyphyllus in young, intermediate, and old semi-natural grassland sites (ca. 5, 10, 15 years representing both time since lupine invasion and plant community age). We analyzed vascular plant community composition, vascular plant species richness, and the cover of various ecological plant groups and L. polyphyllus. In contrast to our hypotheses, we found no change in the mean cover of L. polyphyllus (about 35%) with time since local invasion, and an ordination did not suggest marked changes in plant community composition. L. polyphyllus was associated with lower species richness in invaded plant communities but this effect did not change with time since invasion. Invaded plant communities were also associated with lower occurrence of generalist, oligotrophic (low-nutrient-adapted) and copiotrophic (nutrient-demanding) species but no temporal dynamics were detected. We conclude that even the intermediate cover of L. polyphyllus can reduce plant species richness, but the ecological impact caused by this invader might not dramatically change or accumulate with time since invasion.
Collapse
|
8
|
Potentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands. REMOTE SENSING 2021. [DOI: 10.3390/rs13214333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Semi-natural grasslands contribute highly to biodiversity and other ecosystem services, but they are at risk by the spread of invasive plant species, which alter their habitat structure. Large area grassland monitoring can be a powerful tool to manage invaded ecosystems. Therefore, WorldView-3 multispectral sensor data was utilized to train multiple machine learning algorithms in an automatic machine learning workflow called ‘H2O AutoML’ to detect L. polyphyllus in a nature protection grassland ecosystem. Different degree of L. polyphyllus cover was collected on 3 × 3 m2 reference plots, and multispectral bands, indices, and texture features were used in a feature selection process to identify the most promising classification model and machine learning algorithm based on mean per class error, log loss, and AUC metrics. The best performance was achieved with a binary classification of lupin-free vs. fully invaded 3 × 3 m2 plot classification with a set of 7 features out of 763. The findings reveal that L. polyphyllus detection from WorldView-3 sensor data is limited to large dominant spots and not recommendable for lower plant coverage, especially single plant detection. Further research is needed to clarify if different phenological stages of L. polyphyllus as well as time series increase classification performance.
Collapse
|