1
|
Galià-Camps C, Baños E, Pascual M, Carreras C, Turon X. Multidimensional variability of the microbiome of an invasive ascidian species. iScience 2023; 26:107812. [PMID: 37744040 PMCID: PMC10514470 DOI: 10.1016/j.isci.2023.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Elena Baños
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
2
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|