1
|
Goldman DA, Xue KS, Parrott AB, Jeeda RR, Franzese LR, Lopez JG, Vila JCC, Petrov DA, Good BH, Relman DA, Huang KC. Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569120. [PMID: 38076867 PMCID: PMC10705444 DOI: 10.1101/2023.11.29.569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The long-term success of introduced populations depends on their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization. Here, we investigate how initial population (propagule) size and resource competition interact during community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to a neutral ecological model. Although the composition of the resulting co-cultures deviated substantially from neutral expectations, each co-culture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. This model predicts that propagule size will have larger, longer-lasting effects in diverse communities in which niche overlap is higher, and we experimentally confirm that strain isolates show stronger dose dependence when introduced into diverse communities than in pairwise co-culture. This work shows how neutral-like colonization dynamics can emerge from non-neutral resource competition and have lasting effects on the outcomes of community coalescence.
Collapse
Affiliation(s)
- Doran A. Goldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn B. Parrott
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rashi R. Jeeda
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lauryn R. Franzese
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jaime G. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jean C. C. Vila
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Zhao W, Xue Z, Liu T, Wang H, Han Z. Factors affecting establishment and population growth of the invasive weed Ambrosia artemisiifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1251441. [PMID: 37810382 PMCID: PMC10556694 DOI: 10.3389/fpls.2023.1251441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Ambrosia artemisiifolia is a highly invasive weed. Identifying the characteristics and the factors influencing its establishment and population growth may help to identify high invasion risk areas and facilitate monitoring and prevention efforts. Six typical habitats: river banks, forests, road margins, farmlands, grasslands, and wastelands, were selected from the main distribution areas of A. artemisiifolia in the Yili Valley, China. Six propagule quantities of A. artemisiifolia at 1, 5, 10, 20, 50, and 100 seeds m-2 were seeded by aggregation, and dispersion in an area without A. artemisiifolia. Using establishment probability models and Allee effect models, we determined the minimum number of seeds and plants required for the establishment and population growth of A. artemisiifolia, respectively. We also assessed the moisture threshold requirements for establishment and survival, and the influence of native species. The influence of propagule pressure on the establishment of A. artemisiifolia was significant. The minimum number of seeds required varied across habitats, with the lowest being 60 seeds m-2 for road margins and the highest being 398 seeds for forests. The minimum number of plants required for population growth in each habitat was 5 and the largest number was 43 in pasture. The aggregation distribution of A. artemisiifolia resulted in a higher establishment and survival rate. The minimum soil volumetric water content required for establishment was significantly higher than that required for survival. The presence of native dominant species significantly reduced the establishment and survival rate of A. artemisiifolia. A. artemisiifolia has significant habitat selectivity and is more likely to establish successfully in a habitat with aggregated seeding with sufficient water and few native species. Establishment requires many seeds but is less affected by the Allee effect after successful establishment, and only a few plants are needed to ensure reproductive success and population growth in the following year. Monitoring should be increased in high invasion risk habitats.
Collapse
Affiliation(s)
- Wenxuan Zhao
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Zhifang Xue
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Tong Liu
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Hanyue Wang
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Zhiquan Han
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
- College of Science, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Wasan JPM, Pyle LA, Bennett JA. Disturbance and nutrient availability drive absinthe ( Artemisia absinthium) invasion in a native rough fescue grassland. ECOSCIENCE 2023. [DOI: 10.1080/11956860.2023.2165283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- John Paul M Wasan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lysandra A. Pyle
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB, Canada
| | - Jonathan A. Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|