Motteran F, Nadai BM, Braga JK, Silva EL, Varesche MBA. Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2018;
640-641:1411-1423. [PMID:
30021307 DOI:
10.1016/j.scitotenv.2018.05.375]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, the microbial community characterization and metabolic pathway identification involved in the linear alkylbenzene sulfonated (LAS) degradation from commercial laundry wastewater in a fluidized bed reactor (FBR) on an increased scale were performed using the Illumina MiSeq platform. Ethanol and non-ionic surfactant (LAE, Genapol C-100) were used as co-substrates. The FBR was operated in five operational phases: (I) synthetic substrate for inoculation; (II) 7.9 ± 4.7 mg/L LAS and 11.7 ± 6.9 mg/L LAE; (III) 19.4 ± 12.9 mg/L LAS, 19.6 ± 9.2 mg/L LAE and 205 mg/L ethanol; (IV) 25.9 ± 11 mg/L LAS, 19.5 ± 9.1 mg/L LAE and 205 mg/L ethanol and (V) 43.9 ± 18 mg/L LAS, 25 ± 9.8 mg/L LAE and 205 mg/L ethanol. At all operation phases, organic matter was removed from 40.4 to 85.1% and LAS removal was from 24.7 to 56%. Sulfate-reducing bacteria (SRB) were identified in the biofilm of FBR in all operational phases. Although the LAS promoted a toxic effect on the microbiota, this effect can be reduced when using biodegradable co-substrates, such as ethanol and LAE, which was observed in Phase IV. In this phase, there was a greater microbial diversity (Shannon index) and higher microorganism richness (Chao 1 index), both for the Domain Bacteria, and for the Domain Archaea.
Collapse