1
|
Luo J, Li Y, Cao H, Zhu Y, Liu X, Li H, Liao X. Variations of microbiota in three types of typical military contaminated sites: Diversities, structures, influence factors, and co-occurrence patterns. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130290. [PMID: 36335906 DOI: 10.1016/j.jhazmat.2022.130290] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Contamination with energetic compounds (ECs) is common in military sites and poses a great risk to the environment and human health. However, its effects on the soil bacterial communities remain unclear. This study assessed the variations of bacterial communities, co-occurrence patterns, and their influence factors in three types of typical military-contaminated sites (artillery range, military-industrial site, and ammunition destruction site). The results showed that the most polluted sites were ammunition destruction sites, followed by military-industrial sites, whereas pollution in the artillery ranges was minimal. The average concentrations of ECs including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in the study sites ranged 120-1.67 × 105, 20-7.20 × 104, and 180-2.38 × 105 μg/kg, respectively. Bacterial diversity and community structure in military-industrial and ammunition destruction sites were significantly changed, but not in artillery ranges. TNT, pH, and soil moisture are the critical factors affecting bacterial communities in contaminated military sites. Co-occurrence network analysis indicated that the pressure of ECs affected bacterial interactions and microbiota function. Our findings provide new insights into the variations in bacterial communities in EC-contaminated military sites and references for the bioremediation of ECs.
Collapse
Affiliation(s)
- Junpeng Luo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| | - Hongying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haonan Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
2
|
Pal Y, Mayilraj S, Krishnamurthi S. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Lett Appl Microbiol 2022; 75:1433-1448. [PMID: 35972393 DOI: 10.1111/lam.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Environmental contamination by hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX), the two most widely used compounds for military operations, is a long-standing problem at the manufacturing and decommissioning plants. Since explosives contamination has previously been shown to favour the growth of specific bacterial communities, the present study attempts to identify the specialist bacterial communities and their potential functional and metabolic roles by using amplicon targeted and whole-metagenome sequencing approaches (WMS) in samples collected from two distinct explosives manufacturing sites. We hypothesize that the community structure and functional attributes of bacterial population are substantially altered by the concentration of explosives and physicochemical conditions. The results highlight the predominance of Planctomycetes in contrast to previous reports from similar habitats. The detailed phylogenetic analysis revealed the presence of OTU's related to bacterial members known for their explosives degradation. Further, the functional and metabolic analyses highlighted the abundance of putative genes and unidentified taxa possibly associated with xenobiotic biodegradation. Our findings suggest that microbial species capable of utilizing explosives as a carbon, energy, or electron source are favoured by certain selective pressures based on the prevailing physicochemical and geographical conditions.
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036.,Director of Research, Bentoli AgriNutrition, India Pvt Ltd., 3F2, Third Floor, Front Block, Metro Tower, Building No.115, Poonamallee, High Road, Chennai, - 600 084
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| |
Collapse
|
3
|
Exploring the Distinct Distribution of Archaeal Communities in Sites Contaminated with Explosives. Biomolecules 2022; 12:biom12040489. [PMID: 35454078 PMCID: PMC9028785 DOI: 10.3390/biom12040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023] Open
Abstract
Most of the research on bioremediation and estimation of microbial diversity in waste contaminated sites is focused on the domain Bacteria, whereas details on the relevance of Archaea are still lacking. The present study examined the archaeal diversity and predicted metabolic pathways in two discrete sites (SITE1 and SITE2) contaminated with explosives (RDX and HMX) by amplicon-targeted sequencing of 16S rRNA genes. In total, 14 soil samples were processed, and 35,758 OTUs were observed, among which 981 OTUs were classified as Archaea, representing ~2.7% of the total microbial diversity in our samples. The majority of OTUs belonged to phyla Euryarchaeota (~49%), Crenarchaeota (~24%), and Thaumarchaeota (~23%), while the remaining (~4%) OTUs were affiliated to Candidatus Parvarchaeota, Candidatus Aenigmarchaeota, and Candidatus Diapherotrites. The comparative studies between explosives contaminated and agricultural soil samples (with no history of explosives contamination) displayed significant differences between the compositions of the archaeal communities. Further, the metabolic pathways pertaining to xenobiotic degradation were presumably more abundant in the contaminated sites. Our data provide a first comprehensive report of archaeal communities in explosives contaminated sites and their putative degradation role in such ecosystems which have been as yet unexplored.
Collapse
|
4
|
Santiago LD, DeLeon-Rodriguez N, LaSanta-Pagán K, Hatt JK, Kurt Z, Massol-Deyá A, Konstantinidis KT. Microbial diversity in a military impacted lagoon (Vieques, Puerto Rico) and description of "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. comprising a new bacterial family. Syst Appl Microbiol 2021; 45:126288. [PMID: 34933230 DOI: 10.1016/j.syapm.2021.126288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The Anones Lagoon, located in the Island Municipality of Vieques, Puerto Rico (PR), received extensive bombing by the US Navy during military exercises for decades until 2003 when military activities ceased. Here, we employed shotgun metagenomic sequencing to investigate how microbial communities responded to pollution by heavy metals and explosives at this lagoon. Sediment samples (0-5 cm) from Anones were collected in 2005 and 2014 and compared to samples from two reference lagoons, i.e., Guaniquilla, Cabo Rojo (a natural reserve) and Condado, San Juan (PR's capital city). Consistent with low anthropogenic inputs, Guaniquilla exhibited the highest degree of diversity with a lower frequency of genes related to xenobiotics metabolism between the three lagoons. Notably, a clear shift was observed in Anones, with Euryarchaeota becoming enriched (9% of total) and a concomitant increase in community diversity, by about one order of magnitude, after almost 10 years without bombing activities. In contrast, genes associated with explosives biodegradation and heavy metal transformation significantly decreased in abundance in Anones 2014 (by 91.5%). Five unique metagenome-assembled genomes (MAGs) were recovered from the Anones 2005 sample that encoded genetic determinants implicated in biodegradation of contaminants, and we propose to name one of them as "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. within the Gammaproteobacteria class. Collectively, these results provide new insights into the natural attenuation of explosive contaminants by the benthic microbial communities of the Anones lagoon and provide a reference point for assessing other similarly impacted sites and associated bioremediation efforts.
Collapse
Affiliation(s)
- Lizbeth-Dávila Santiago
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Natasha DeLeon-Rodriguez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Zohre Kurt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arturo Massol-Deyá
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; Casa Pueblo, Adjuntas, Puerto Rico.
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
5
|
Yang X, Lai JL, Zhang Y, Luo XG, Han MW, Zhao SP. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117478. [PMID: 34087636 DOI: 10.1016/j.envpol.2021.117478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
6
|
Yang X, Lai JL, Li J, Zhang Y, Luo XG, Han MW, Zhu YB, Zhao SP. Biodegradation and physiological response mechanism of Bacillus aryabhattai to cyclotetramethylenete-tranitramine (HMX) contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112247. [PMID: 33765573 DOI: 10.1016/j.jenvman.2021.112247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 05/14/2023]
Abstract
This study aims to reveal the biodegradation and interaction mechanism of cyclotetramethylenete-tranitramine (HMX) by a newly isolated bacteria. In this study, a bacterial strain (Bacillus aryabhattai) with high efficiency for HMX degradation was used as the test organism to analyze the changes in growth status, cell function, and mineral metabolism following exposure to different stress concentrations (0 and 5 mg L-1) of HMX. Non-targeted metabonomics was used to reveal the metabolic response of this strain to HMX stress. The results showed that when the HMX concentration was 5 mg L-1, the removal rate of HMX within 24 h of inoculation with Bacillus aryabhatta was as high as 90.5%, the OD600 turbidity was 1.024, and the BOD5 was 225 mg L-1. Scanning electron microscope (SEM) images showed that the morphology of bacteria was not obvious Variety, Fourier transform infrared spectroscopy (FTIR) showed that the cell surface -OH functional groups drifted, and ICP-MS showed that the cell mineral element metabolism was disturbed. Non-targeted metabonomics showed that HMX induced the differential expression of 254 metabolites (133 upregulated and 221 downregulated). The main differentially expressed metabolites during HMX stress were lipids and lipid-like molecules, and the most significantly affected metabolic pathway was purine metabolism. At the same time, the primary metabolic network of bacteria was disordered. These results confirmed that Bacillus aryabhattai has a high tolerance to HMX and can efficiently degrade HMX. The degradation mechanism involves the extracellular decomposition of HMX and transformation of the degradation products into intracellular purines, amino sugars, and nucleoside sugars that then participate in cell metabolism.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yong-Bing Zhu
- National NBC National Key Laboratory of Civilian Protection, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
7
|
Whole community transcriptome of a sequencing batch reactor transforming 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). Biodegradation 2017; 29:71-88. [DOI: 10.1007/s10532-017-9814-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
8
|
Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites. Appl Microbiol Biotechnol 2016; 100:7297-309. [DOI: 10.1007/s00253-016-7559-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
|
9
|
Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress. Appl Environ Microbiol 2016; 82:2227-2237. [PMID: 26850298 DOI: 10.1128/aem.03482-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.
Collapse
|