1
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
2
|
Ramazani Z, Nakhaee S, Sharafi K, Rezaei Z, Mansouri B. Autism spectrum disorder: Cadmium and mercury concentrations in different biological samples, a systematic literature review and meta-analysis of human studies. Heliyon 2024; 10:e27789. [PMID: 38496888 PMCID: PMC10944282 DOI: 10.1016/j.heliyon.2024.e27789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The present study was conducted to investigate the differences in cadmium (Cd) and mercury (Hg) concentrations between children with autism spectrum disorder (ASD) and controls. In this systematic review and meta-analysis study, three thousand one hundred forty-five studies were collected from scientific databases including Web of Science, Scopus, PubMed, and Google Scholar from January 2000 to October 2022 and were investigated for eligibility. As a result, 37 studies published in the period from 2003 to 2022 met our inclusion criteria and were considered in the meta-analysis. The heterogeneity assumption was evaluated using the Chi-squared-based Q-test and I-squared (I2) statistics. The pooled estimates were shown in the forest plots with Hedges' g (95% confidence interval) values. The random effects model demonstrated that there is no significant difference in the blood (Hedges' g: 0.14, 95% CI: 0.45, 0.72, p > 0.05), hair (Hedges' g: 0.12, 95% CI: 0.26, 0.50, p > 0.05), and urinary (Hedges' g: 0.05, 95% CI: 0.86, 0.76, p > 0.05) Cd levels of the case group versus control subjects. Moreover, the pooled findings of studies showed no significant difference in the blood (Hedges' g: 1.69, 95% CI: 0.09, 3.48, p > 0.05), hair (Hedges' g: 3.42, 95% CI: 1.96, 8.80, p > 0.05), and urinary (Hedges' g: 0.49, 95% CI: 1.29 - 0.30, p > 0.05) Hg concentrations. The results demonstrated no significant differences in Hg and Cd concentrations in different biological samples of children with ASD compared to control subjects.
Collapse
Affiliation(s)
- Zana Ramazani
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zaynab Rezaei
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Stojsavljević A, Lakićević N, Pavlović S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023; 11:3344. [PMID: 38137565 PMCID: PMC10741416 DOI: 10.3390/biomedicines11123344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury (Hg) is a non-essential trace metal with unique neurochemical properties and harmful effects on the central nervous system. In this study, we present a comprehensive review and meta-analysis of peer-reviewed research encompassing five crucial clinical matrices: hair, whole blood, plasma, red blood cells (RBCs), and urine. We assess the disparities in Hg levels between gender- and age-matched neurotypical children (controls) and children diagnosed with autism spectrum disorder (ASD) (cases). After applying rigorous selection criteria, we incorporated a total of 60 case-control studies into our meta-analysis. These studies comprised 25 investigations of Hg levels in hair (controls/cases: 1134/1361), 15 in whole blood (controls/cases: 1019/1345), 6 in plasma (controls/cases: 224/263), 5 in RBCs (controls/cases: 215/293), and 9 in urine (controls/cases: 399/623). This meta-analysis did not include the data of ASD children who received chelation therapy. Our meta-analysis revealed no statistically significant differences in Hg levels in hair and urine between ASD cases and controls. In whole blood, plasma, and RBCs, Hg levels were significantly higher in ASD cases compared to their neurotypical counterparts. This indicates that ASD children could exhibit reduced detoxification capacity for Hg and impaired mechanisms for Hg excretion from their bodies. This underscores the detrimental role of Hg in ASD and underscores the critical importance of monitoring Hg levels in ASD children, particularly in early childhood. These findings emphasize the pressing need for global initiatives aimed at minimizing Hg exposure, thus highlighting the critical intersection of human-environment interaction and neurodevelopment health.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
4
|
Baj J, Flieger W, Flieger M, Forma A, Sitarz E, Skórzyńska-Dziduszko K, Grochowski C, Maciejewski R, Karakuła-Juchnowicz H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129:117-132. [PMID: 34339708 DOI: 10.1016/j.neubiorev.2021.07.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland.
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego Street 8b, 20-090, Lublin, Poland
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| | - Katarzyna Skórzyńska-Dziduszko
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwillowska Street 11, Lublin, 20-080, Poland
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland; Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| |
Collapse
|
5
|
Zhu Z, He Y, Yang J, Li Q, Cheng H, Zhong L, Wang T, Wang T, Ling S. Study time, glasses utilization and age affect quality of life among senior first-year Chinese myopia students. Eur J Ophthalmol 2021; 31:2969-2976. [PMID: 33401944 DOI: 10.1177/1120672120982528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To compare the quality of life of senior first-year students with normal vision and myopia, and to explore the risk factors related to quality of life in students with myopia. METHODS In this study, 1103 senior first-year students were enrolled in ten high schools. These students were divided according to the diopter degree, with 916 myopia students and 187 normal vision students. Visual function indexes, such as naked eye vision, were measured and recorded, and social demographic indexes and the National Eye Institute 25-Item Visual Function Questionnaire (NEI VFQ-25) was used. The differences in quality of life between the two groups were compared. Multiple linear regression analysis was used to explore the possible risk factors for quality of life in myopia students. RESULTS In the NEI VFQ-25, the total quality of life scores of myopia students (77.06 ± 15.66) were lower than those of normal vision students (85.49 ± 12.37). The difference was statistically significant (p = 0.007). In the correlation analysis, the total scores of quality of life in myopia students were positively correlated with wearing glasses (p = 0.049), and were negatively correlated with study time (p = 0.029). Multiple linear regression analysis showed that study time, wearing glasses and age were risk factors affecting quality of life in myopia students. CONCLUSION Our results show that senior first-year myopia students have lower quality of life scores than students with normal vision. Study time, wearing glasses and age are risk factors for quality of life in senior first-year myopia students.
Collapse
Affiliation(s)
- Ziqian Zhu
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yan He
- Department of English, Guangzhou Pui Ching Middle School, Guangzhou, China
| | - Jiezheng Yang
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiaoli Li
- Department of Ophthalmology, Nanhai Hospital of Southern Medical University, Guangzhou, China
| | - HuanHuan Cheng
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Zhong
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Aaseth J, Hilt B, Bjørklund G. Mercury exposure and health impacts in dental personnel. ENVIRONMENTAL RESEARCH 2018; 164:65-69. [PMID: 29482185 DOI: 10.1016/j.envres.2018.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 05/24/2023]
Abstract
Based on toxicological, clinical, and epidemiological knowledge, the present paper reviews the status regarding possible deleterious health effects from occupational exposure to metallic mercury (Hg) in dental practice. Symptoms from the central nervous system are among the health problems that most often are attributed to Hg exposure in dentists and dental nurses working with amalgam. Uncharacteristic symptoms of chronic low-level Hg vapor exposure including weakness, fatigue, and anorexia have been observed in numerous studies of dental personnel. It is crucial to protect both human health and the environment against negative effects of Hg. In line with this, the use of dental amalgam in industrial countries is about to be phased out. In Norway and Sweden, the use of the filling material is banned.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway.
| | - Bjørn Hilt
- Department of Occupational Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
8
|
Bjørklund G, Bengtsson U, Chirumbolo S, Kern JK. Concerns about environmental mercury toxicity: do we forget something else? ENVIRONMENTAL RESEARCH 2017; 152:514-516. [PMID: 27616662 DOI: 10.1016/j.envres.2016.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 05/24/2023]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway.
| | - Ulf Bengtsson
- Ret. Department of Management and Engineering, Linköping University, Linköping, Sweden
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc, and CoMeD, Silver Spring, MD, USA; CONEM US Autism Research Group, Allen, TX, USA
| |
Collapse
|
9
|
Khaled EM, Meguid NA, Bjørklund G, Gouda A, Bahary MH, Hashish A, Sallam NM, Chirumbolo S, El-Bana MA. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab Brain Dis 2016; 31:1419-1426. [PMID: 27406246 DOI: 10.1007/s11011-016-9870-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social, communication, and behavioral development. Recent evidence supported but also questioned the hypothetical role of compounds containing mercury (Hg) as contributors to the development of ASD. Specific alterations in the urinary excretion of porphyrin-containing ring catabolites have been associated with exposure to Hg in ASD patients. In the present study, the level of urinary porphyrins, as biomarkers of Hg toxicity in children with ASD, was evaluated, and its correlation with severity of the autistic behavior further explored. A total of 100 children was enrolled in the present study. They were classified into three groups: children with ASD (40), healthy controls (40), and healthy siblings of the ASD children (20). Children with ASD were diagnosed using DSM-IV-TR, ADI-R, and CARS tests. Urinary porphyrins were evaluated within the three groups using high-performance liquid chromatography (HPLC), after plasma evaluation of mercury (Hg) and lead (Pb) in the same groups. Results showed that children with ASD had significantly higher levels of Hg, Pb, and the porphyrins pentacarboxyporphyrin, coproporphyrin, precoproporphyrin, uroporphyrins, and hexacarboxyporphyrin compared to healthy controls and healthy siblings of the ASD children. However, there was no significant statistical difference in the level of heptacarboxyporphyrin among the three groups, while a significant positive correlation between the levels of coproporphyrin and precoproporphyrin and autism severity was observed. Mothers of ASD children showed a higher percentage of dental amalgam restorations compared to the mothers of healthy controls suggesting that high Hg levels in children with ASD may relate to the increased exposure to Hg from maternal dental amalgam during pregnancy and lactation. The results showed that the ASD children in the present study had increased blood Hg and Pb levels compared with healthy control children indicating that disordered porphyrin metabolism might interfere with the pathology associated with the autistic neurologic phenotype. The present study indicates that coproporphyrin and precoproporhyrin may be utilized as possible biomarkers for heavy metal exposure and autism severity in children with ASD.
Collapse
Affiliation(s)
- Eman M Khaled
- Department of Pediatric, Al-Azhar University, Cairo, Egypt
| | - Nagwa A Meguid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Amr Gouda
- Department of Genetic Biochemistry, National Research Centre, Giza, Egypt
| | | | - Adel Hashish
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Nermin M Sallam
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- University Laboratory of Medical Research, Department of Medicine, University of Verona, Verona, Italy
| | - Mona A El-Bana
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol 2016; 37:8-24. [PMID: 27473827 DOI: 10.1016/j.jtemb.2016.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The brain pathology in autism spectrum disorders (ASD) indicates marked and ongoing inflammatory reactivity with concomitant neuronal damage. These findings are suggestive of neuronal insult as a result of external factors, rather than some type of developmental mishap. Various xenobiotics have been suggested as possible causes of this pathology. In a recent review, the top ten environmental compounds suspected of causing autism and learning disabilities were listed and they included: lead, methyl-mercury, polychorinated biphenyls, organophosphate pesticides, organochlorine pesticides, endocrine disruptors, automotive exhaust, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, and perfluorinated compounds. This current review, however, will focus specifically on mercury exposure and ASD by conducting a comprehensive literature search of original studies in humans that examine the potential relationship between mercury and ASD, categorizing, summarizing, and discussing the published research that addresses this topic. This review found 91 studies that examine the potential relationship between mercury and ASD from 1999 to February 2016. Of these studies, the vast majority (74%) suggest that mercury is a risk factor for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates that mercury exposure is causal and/or contributory in ASD.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Lisa K Sykes
- CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Boyd E Haley
- University of Kentucky, 410 Administration Drive, Lexington, KY, 40506 USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| |
Collapse
|
11
|
Wong CT, Wais J, Crawford DA. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
| | - Joshua Wais
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
- Department of Biology; York University; Toronto ON Canada M3J 1P3
| |
Collapse
|
12
|
Kern JK, Geier DA, Sykes LK, Geier MR, Deth RC. Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders. J Atten Disord 2015; 19:805-27. [PMID: 23074304 DOI: 10.1177/1087054712459886] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The objective of this study was to review and compare the similarities between autism spectrum disorder (ASD) and ADHD with regard to symptomatology, neurological deficits, metabolic and endocrine-related conditions, and brain pathology. METHOD A comprehensive review of the relevant research literature was carried out. RESULTS A number of important similarities between ASD and ADHD were identified, including recent increases in prevalence, male-biased incidence, shared involvement of sensory processing, motor and impulse control, abnormal patterns of neural connectivity, and sleep disturbances. Studies suggest involvement of androgen metabolism, impaired methylation, and heavy metal toxicity as possible contributing factors for both disorders. CONCLUSION ASD and ADHD share a number of features and pathophysiological conditions, which suggests that the two disorders may be a continuum and have a common origin.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| | | | | | | |
Collapse
|
13
|
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4:e360. [PMID: 24518398 PMCID: PMC3944636 DOI: 10.1038/tp.2014.4] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022] Open
Abstract
Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case-control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case-control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose-effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five studies), glutathione S-transferase (GSTM1 and GSTP1, three of four studies), δ-aminolevulinic acid dehydratase (one study), SLC11A3 (one study) and the metal regulatory transcription factor 1 (one of two studies). Notably, many of the reviewed studies had significant limitations, including lack of replication, limited sample sizes, retrospective design, recall and publication biases, inadequate matching of cases and controls, and the use of nonstandard tools to diagnose ASD. The findings of this review suggest that the etiology of ASD may involve, at least in a subset of children, complex interactions between genetic factors and certain environmental toxicants that may act synergistically or in parallel during critical periods of neurodevelopment, in a manner that increases the likelihood of developing ASD. Because of the limitations of many of the reviewed studies, additional high-quality epidemiological studies concerning environmental toxicants and ASD are warranted to confirm and clarify many of these findings.
Collapse
Affiliation(s)
- D A Rossignol
- Family Medicine, Rossignol Medical Center, Irvine, CA, USA
| | - S J Genuis
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - R E Frye
- Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Geier DA, Kern JK, Geier MR. A Comparison of the Autism Treatment Evaluation Checklist (ATEC) and the Childhood Autism Rating Scale (CARS) for the Quantitative Evaluation of Autism. JOURNAL OF MENTAL HEALTH RESEARCH IN INTELLECTUAL DISABILITIES 2013; 6:255-267. [PMID: 23914277 PMCID: PMC3725669 DOI: 10.1080/19315864.2012.681340] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The purpose of this study was to evaluate scores generated from the Autism Treatment Evaluation Checklist (ATEC), a parent-rated measure, and those derived from professionally completed Childhood Autism Rating Scale (CARS) evaluations. A cohort of 56 participants diagnosed with an autism spectrum disorder was used for the study, and each child was evaluated independently by the parent using the ATEC and a health care professional using the CARS. The Spearman's rank correlation statistic ρ was used to evaluate the correlation between ATEC and CARS scores. It was observed that there was a significant correlation between total ATEC and CARS scores (ρ = .71). Specific domains in the ATEC evaluation significantly correlated with CARS scores. Sensitivity, specificity, and receiver operating characteristic confirmed the association between CARS and ATEC domains. The results help to validate the utility of the parentally completed ATEC in comparison with an established, professional-related measure of autism.
Collapse
Affiliation(s)
- David A. Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, Maryland
| | - Janet K. Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, Maryland
- University of Texas Southwestern Medical Center, Dallas, Texas
- Address correspondence to Janet K. Kern, Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD 20905. E-mail:
| | | |
Collapse
|
15
|
Kern JK, Haley BE, Geier DA, Sykes LK, King PG, Geier MR. Thimerosal exposure and the role of sulfation chemistry and thiol availability in autism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3771-800. [PMID: 23965928 PMCID: PMC3774468 DOI: 10.3390/ijerph10083771] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder (ASD) is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH) reserve capacity, resulting in a compromised oxidation/reduction (redox) and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM) and other mercury (Hg) compounds. TM is an organomercurial compound (49.55% Hg by weight) that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.
Collapse
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| | - Boyd E. Haley
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; E-Mail:
| | - David A. Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| | - Lisa K. Sykes
- CoMeD, Inc., Silver Spring, MD 20905, USA; E-Mails: (L.K.S.); (P.G.K.)
| | - Paul G. King
- CoMeD, Inc., Silver Spring, MD 20905, USA; E-Mails: (L.K.S.); (P.G.K.)
| | - Mark R. Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| |
Collapse
|
16
|
Hair toxic metal concentrations and autism spectrum disorder severity in young children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:4486-97. [PMID: 23222182 PMCID: PMC3546773 DOI: 10.3390/ijerph9124486] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 01/13/2023]
Abstract
Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg), among subjects diagnosed with an autism spectrum disorder (ASD) in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX) approved the present study. Qualifying study participants (n = 18) were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS) and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor's Data (a CLIA-approved laboratory). CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.
Collapse
|
17
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
18
|
Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2985] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Lack of Correlation Between Metallic Elements Analyzed in Hair by ICP-MS and Autism. J Autism Dev Disord 2011; 42:342-53. [DOI: 10.1007/s10803-011-1245-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
A significant relationship between mercury exposure from dental amalgams and urinary porphyrins: a further assessment of the Casa Pia children's dental amalgam trial. Biometals 2010; 24:215-24. [PMID: 21053054 DOI: 10.1007/s10534-010-9387-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
Previous studies noted specific changes in urinary porphyrin excretion patterns associated with exposure to mercury (Hg) in animals and humans. In our study, urinary porphyrin concentrations were examined in normal children 8-18 years-old from a reanalysis of data provided from a randomized, prospective clinical trial that was designed to evaluate the potential health consequences of prolonged exposure to Hg from dental amalgam fillings (the parent study). Our analysis examined dose-dependent correlations between increasing Hg exposure from dental amalgams and urinary porphyrins utilizing statistical models with adjustments for the baseline level (i.e. study year 1) of the following variables: urinary Hg, each urinary porphyrin measure, gender, race, and the level of lead (Pb) in each subject's blood. Significant dose-dependent correlations between cumulative exposure to Hg from dental amalgams and urinary porphyrins associated with Hg body-burden (pentacarboxyporphyrin, precoproporphyrin, and coproporphyrin) were observed. Overall, 5-10% increases in Hg-associated porphyrins for subjects receiving an average number of dental amalgam fillings in comparison to subjects receiving only composite fillings were observed over the 8-year course of the study. In contrast, no significant correlations were observed between cumulative exposure to Hg from dental amalgams and urinary porphyrins not associated with Hg body-burden (uroporphyrin, heptacarboxyporphyrin, and hexacarboxyporphyrin). In conclusion, our study, in contrast to the no-effect results published from the parent study, further establishes the sensitivity and specificity of specific urinary porphyrins as a biomarker for low-level Hg body-burden, and also reveals that dental amalgams are a significant chronic contributor to Hg body-burden.
Collapse
|