1
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Carneiro TJ, Martins AS, Marques MPM, Gil AM. Metabolic Aspects of Palladium(II) Potential Anti-Cancer Drugs. Front Oncol 2020; 10:590970. [PMID: 33154950 PMCID: PMC7586886 DOI: 10.3389/fonc.2020.590970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
This mini-review reports on the existing knowledge of the metabolic effects of palladium [Pd(II)] complexes with potential anticancer activity, on cell lines and murine models. Most studies have addressed mononuclear Pd(II) complexes, although increasing interest has been noted in bidentate complexes, as polynuclear structures. In addition, the majority of records have reported in vitro studies on cancer cell lines, some including the impact on healthy cells, as potentially informative in relation to side effects. Generally, these studies address metabolic effects related to the mechanisms of induced cell death and antioxidant defense, often involving the measurement of gene and protein expression patterns, and evaluation of the levels of reactive oxygen species or specific metabolites, such as ATP and glutathione, in relation to mitochondrial respiration and antioxidant mechanisms. An important tendency is noted toward the use of more untargeted approaches, such as the use of omic sciences e.g., proteomics and metabolomics. In the discussion section of this mini-review, the developments carried out so far are summarized and suggestions of possible future developments are advanced, aiming at recognizing that metabolites and metabolic pathways make up an important part of cell response and adaptation to therapeutic agents, their further study potentially contributing valuably for a more complete understanding of processes such as biotoxicity or development of drug resistance.
Collapse
Affiliation(s)
- Tatiana J Carneiro
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,"Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana S Martins
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,"Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - M Paula M Marques
- "Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Gil
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
4
|
NMR-Based Metabolomics in Metal-Based Drug Research. Molecules 2019; 24:molecules24122240. [PMID: 31208065 PMCID: PMC6630333 DOI: 10.3390/molecules24122240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Thanks to recent advances in analytical technologies and statistical capabilities, the application field of metabolomics has increased significantly. Currently, this approach is used to investigate biological substrates looking for metabolic profile alterations, diseases markers, and drug effects. In particular, NMR spectroscopy has shown great potential as a detection technique, mainly for the ability to detect multiple (10s to 100s) metabolites at once without separation. Only in recent years has the NMR-based metabolomic approach been extended to investigate the cell metabolic alterations induced by metal-based antitumor drug administration. As expected, these studies are mainly focused on platinum complexes, but some palladium and ruthenium compounds are also under investigation. The use of a metabolomics approach was very effective in assessing tumor response to drugs and providing insights into the mechanism of action and resistance. Therefore, metabolomics may open new perspectives into the development of metal-based drugs. In particular, it has been shown that NMR-based, in vitro metabolomics is a powerful tool for detecting variations of the cell metabolites induced by the metal drug exposure, thus offering also the possibility of identifying specific markers for in vivo monitoring of tumor responsiveness to anticancer treatments.
Collapse
|
5
|
Ruthenium(II) trithiacyclononane complexes of 7,3′,4′-trihydroxyflavone, chrysin and tectochrysin: Synthesis, characterisation, and cytotoxic evaluation. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Henriques MC, Faustino MAF, Silva AMS, Felgueiras J, Fardilha M, Braga SS. A ruthenium(II)-trithiacyclononane curcuminate complex: Synthesis, characterization, DNA-interaction, and cytotoxic activity. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1336232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Artur M. S. Silva
- Department of Chemistry, QOPNA Research Unit, University of Aveiro, Aveiro, Portugal
| | - Juliana Felgueiras
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Susana Santos Braga
- Department of Chemistry, QOPNA Research Unit, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Lamego I, Marques MPM, Duarte IF, Martins AS, Oliveira H, Gil AM. Impact of the Pd 2Spermine Chelate on Osteosarcoma Metabolism: An NMR Metabolomics Study. J Proteome Res 2017; 16:1773-1783. [PMID: 28244322 DOI: 10.1021/acs.jproteome.7b00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metabolomics study of Pd2Spermine(Spm) on osteosarcoma MG-63 and osteoblastic HOb cells is presented to assess the impact of the potential palladium drug on cell metabolism compared with cisplatin (cDDP). Despite its higher cytotoxicity, Pd2Spm induced lower (and reversible) metabolic impact on MG-63 cells and the absence of apoptosis; conversely, it induced significant deviations in osteoblastic amino acid metabolism. However, when in combination with doxorubicin and methotrexate, Pd2Spm induced strong metabolic deviations on lipids, choline compounds, amino acids, nucleotides, and compounds related to antioxidative mechanisms (e.g., glutathione, inositol, hypoxanthine), similarly to the cDDP cocktail. Synergetic effects included triggering of lipid biosynthesis by Pd2Spm in the presence of doxorubicin (and reinforced by methotrexate) and changes in the glycosylation substrate uridine diphosphate acetylgalactosamine and methionine and serine metabolisms. This work provides promising results related to the impact of Pd2Spm on osteosarcoma cellular metabolism, particularly in drug combination protocols. Lipid metabolism, glycosylation, and amino acid metabolisms emerge as relevant features for targeted studies to further understand a potential anticancer mechanism of combined Pd2Spm.
Collapse
Affiliation(s)
- Inês Lamego
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal.,R&D Unit "Molecular Physical-Chemistry", University of Coimbra , 3000-213 Coimbra, Portugal
| | - M Paula M Marques
- R&D Unit "Molecular Physical-Chemistry", University of Coimbra , 3000-213 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra , 3000-213 Coimbra, Portugal
| | - Iola F Duarte
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| | - Ana S Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro , 3810 Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| |
Collapse
|
8
|
Dayan S, Kayaci N, Kalaycioglu Ozpozan N, Dayan O. SBA-15-supported N
-coordinate ruthenium(II) materials bearing sulfonamide-type ligands: Effect of ligand backbones on catalytic transfer hydrogenation of ketones and aldehydes. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serkan Dayan
- Department of Chemistry, Faculty of Science; Erciyes University; 38039 Kayseri Turkey
| | - Nilgun Kayaci
- Department of Chemistry, Faculty of Science; Erciyes University; 38039 Kayseri Turkey
| | | | - Osman Dayan
- Department of Chemistry, Faculty of Arts and Science; Çanakkale Onsekiz Mart University; 17100 Çanakkale Turkey
| |
Collapse
|
9
|
Julkapli NM, Bagheri S, Sapuan SM. Multifunctionalized Carbon Nanotubes Polymer Composites: Properties and Applications. ADVANCED STRUCTURED MATERIALS 2015. [DOI: 10.1007/978-81-322-2470-9_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Braga SS, Mokal V, Paz FAA, Pillinger M, Branco AF, Sardão VA, Diogo CV, Oliveira PJ, Marques MPM, Romão CC, Gonçalves IS. Synthesis, Characterisation and Antiproliferative Studies of Allyl(dicarbonyl)(cyclopentadienyl)molybdenum Complexes and Cyclodextrin Inclusion Compounds. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|