1
|
Zhang X, Nickerson R, Burton L, Stueck A, Holbein B, Cheng Z, Zhou J, Lehmann C. The Hydroxypyridinone Iron Chelator DIBI Reduces Bacterial Load and Inflammation in Experimental Lung Infection. Biomedicines 2024; 12:1452. [PMID: 39062025 PMCID: PMC11274704 DOI: 10.3390/biomedicines12071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Iron plays a critical role in lung infections due to its function in the inflammatory immune response but also as an important factor for bacterial growth. Iron chelation represents a potential therapeutic approach to inhibit bacterial growth and pathologically increased pro-inflammatory mediator production. The present study was designed to investigate the impact of the iron chelator DIBI in murine lung infection induced by intratracheal Pseudomonas aeruginosa (strain PA14) administration. DIBI is a polymer with a polyvinylpyrrolidone backbone containing nine 3-hydroxy-1-(methacrylamidoethyl)-2-methyl-4(1H) pyridinone (MAHMP) residues per molecule and was given by intraperitoneal injection either as a single dose (80 mg/kg) immediately after PA14 administration or a double dose (second dose 4 h after PA14 administration). The results showed that lung NF-κBp65 levels, as well as levels of various inflammatory cytokines (TNFα, IL-1β, IL-6) both in lung tissue and bronchoalveolar lavage fluid (BALF), were significantly increased 24 h after PA14 administration. Single-dose DIBI did not affect the bacterial load or inflammatory response in the lungs or BALF. However, two doses of DIBI significantly decreased bacterial load, attenuated NF-κBp65 upregulation, reduced inflammatory cytokines production, and relieved lung tissue damage. Our findings support the conclusion that the iron chelator, DIBI, can reduce lung injury induced by P. aeruginosa, via its anti-bacterial and anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Guangzhou 510515, China
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Rhea Nickerson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Lauren Burton
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Ashley Stueck
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Bruce Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Bennett C, Cooksley CM, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone-Gallium-Protoporphyrin Chitogel Decreases Pseudomonas aeruginosa Biofilm Infection without Impairing Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:793. [PMID: 38399044 PMCID: PMC10889926 DOI: 10.3390/ma17040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing.
Collapse
Affiliation(s)
- Tahlia L. Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Suzanne Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Catherine Bennett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Clare M. Cooksley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Peter John Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Sarah Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| |
Collapse
|
3
|
Guedes GMDM, Freitas AS, Pinheiro RM, Pereira VC, Melgarejo CMA, de Araujo ES, Ribeiro KVC, Bandeira SP, Cordeiro RDA, Rocha MFG, Sidrim JJC, Castelo-Branco DDSCM. Antibiofilm activity of promethazine, deferiprone, and Manuka honey in an ex vivo wound model. Lett Appl Microbiol 2023; 76:ovad119. [PMID: 37791895 DOI: 10.1093/lambio/ovad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rodrigo Machado Pinheiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Emanuela Silva de Araujo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Késia Veras Costa Ribeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Avenida Dr. Silas Munguba, 1700 - Itaperi - CEP 60714-903, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Itoh K, Tsutani H, Mitsuke Y, Iwasaki H. Potential additional effects of iron chelators on antimicrobial- impregnated central venous catheters. Front Microbiol 2023; 14:1210747. [PMID: 37608951 PMCID: PMC10442153 DOI: 10.3389/fmicb.2023.1210747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Kazuhiro Itoh
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| | - Hiroshi Tsutani
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Yasuhiko Mitsuke
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
5
|
Guedes GMDM, Ribeiro KVC, Araújo ESD, Pereira VC, Soares ACDCF, Freitas AS, Cordeiro RDA, Sidrim JJC, Rocha MFG, Castelo-Branco DDSCM. In vitro effect of the iron chelator deferiprone on the antimicrobial susceptibility and biofilms of Burkholderia pseudomallei. BIOFOULING 2023; 39:135-144. [PMID: 37013808 DOI: 10.1080/08927014.2023.2192405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of β-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | - Alyne Soares Freitas
- Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
6
|
Salmonella Typhimurium and Pseudomonas aeruginosa Respond Differently to the Fe Chelator Deferiprone and to Some Novel Deferiprone Derivatives. Int J Mol Sci 2021; 22:ijms221910217. [PMID: 34638558 PMCID: PMC8508819 DOI: 10.3390/ijms221910217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to obtain Fe is critical for pathogens to multiply in their host. For this reason, there is significant interest in the identification of compounds that might interfere with Fe management in bacteria. Here we have tested the response of two Gram-negative pathogens, Salmonella enterica serovar Typhimurium (STM) and Pseudomonas aeruginosa (PAO1), to deferiprone (DFP), a chelating agent already in use for the treatment of thalassemia, and to some DFP derivatives designed to increase its lipophilicity. Our results indicate that DFP effectively inhibits the growth of PAO1, but not STM. Similarly, Fe-dependent genes of the two microorganisms respond differently to this agent. DFP is, however, capable of inhibiting an STM strain unable to synthesize enterochelin, while its effect on PAO1 is not related to the capability to produce siderophores. Using a fluorescent derivative of DFP we have shown that this chelator can penetrate very quickly into PAO1, but not into STM, suggesting that a selective receptor exists in Pseudomonas. Some of the tested derivatives have shown a greater ability to interfere with Fe homeostasis in STM compared to DFP, whereas most, although not all, were less active than DFP against PAO1, possibly due to interference of the added chemical tails with the receptor-mediated recognition process. The results reported in this work indicate that DFP can have different effects on distinct microorganisms, but that it is possible to obtain derivatives with a broader antimicrobial action.
Collapse
|