1
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Dutta S, Bose D, Ghosh S, Chakrabarti A. Spectrin: an alternate target for cytoskeletal drugs. J Biomol Struct Dyn 2022:1-12. [PMID: 35994328 DOI: 10.1080/07391102.2022.2109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cytoskeletal drugs having enormous therapeutic potential act on the cytoskeletal components like actin, tubulin either by promoting polymerization or destabilizing the same. Here we present the interaction of the popular cytoskeletal drugs such as taxol, latrunculin and cytochalasin with spectrin, a huge protein with multi domains that forms the cytoskeletal network. Particularly, the actin binding domain of spectrin regulates the dynamics of the actin cytoskeleton. We followed the binding of these drugs to its actin binding domain and intact spectrin as well. These drugs bind with moderate affinity (Kb ∼ 104 M-1) and the interaction with actin binding domain is entropy driven and hydrophobic in nature as determined by Van't Hoff plot. The docking studies and molecular dynamics simulations further corroborate the experimental findings. Particularly the higher binding constants in the case of latrunculin and cytochalasin to the actin binding domain of spectrin suggest the binding sites are presumably located in its actin binding domain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sansa Dutta
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.,Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Semanti Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Li D. Role of Spectrin in Endocytosis. Cells 2022; 11:cells11152459. [PMID: 35954302 PMCID: PMC9368487 DOI: 10.3390/cells11152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal spectrin is found in (non)erythroid cells. Eukaryotic endocytosis takes place for internalizing cargos from extracellular milieu. The role of spectrin in endocytosis still remains poorly understood. Here, I summarize current knowledge of spectrin function, spectrin-based cytoskeleton and endocytosis of erythrocytes, and highlight how spectrin contributes to endocytosis and working models in different types of cells. From an evolutionary viewpoint, I discuss spectrin and endocytosis in a range of organisms, particularly in plants and yeast where spectrin is absent. Together, the role of spectrin in endocytosis is related to its post-translational modification, movement/rearrangement, elimination (by proteases) and meshwork fencing.
Collapse
Affiliation(s)
- Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Bose D, Aggarwal S, Das D, Narayana C, Chakrabarti A. Erythroid spectrin binding modulates peroxidase and catalase activity of heme proteins. IUBMB Life 2022; 74:474-487. [DOI: 10.1002/iub.2607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Dipayan Bose
- Crystallography & Molecular Biology Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| | - Shantanu Aggarwal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru India
| | - Debashree Das
- Crystallography & Molecular Biology Division Saha Institute of Nuclear Physics Kolkata India
| | - Chandrabhas Narayana
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
5
|
Pal S, Bose D, Chakrabarti A, Chattopadhyay A. Comparative Analysis of Tryptophan Dynamics in Spectrin and Its Constituent Domains: Insights from Fluorescence. J Phys Chem B 2021; 126:1045-1053. [PMID: 34845910 DOI: 10.1021/acs.jpcb.1c08600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spectrin is a cytoskeletal protein ubiquitous in metazoan cells that acts as a liaison between the plasma membrane and the cellular interior and imparts mechanical stability to the plasma membrane. Spectrin is known to be highly dynamic, with an appreciable degree of torsional and segmental mobility. In this context, we have earlier utilized the red edge excitation shift (REES) approach to report the retention of restricted solvation dynamics and local structure in the vicinity of spectrin tryptophans on urea denaturation and loss of spectrin secondary structure. As a natural progression of our earlier work, in this work, we carried out a biophysical dissection of tryptophan solvation and rotational dynamics in spectrin and its constituent domains, in order to trace the origin of local structure retention observed in denatured spectrin. Our results show that the ankyrin binding domain (and, to a lesser extent, the β-tetramerization domain) is capable of retention of local structure, similar to that observed for intact spectrin. However, all α-chain domains studied exhibit negligible retention of local structure on urea denaturation. Such a stark chain-specific retention of local structure could originate from the fact that the β-chain domains possess specialized functions, where conservation of local (structural) integrity may be a prerequisite for optimum cellular function. To the best of our knowledge, these observations represent one of the first systematic biophysical dissections of spectrin dynamics in terms of its constituent domains and add to emerging literature on comprehensive domain-based analysis of spectrin organization, dynamics, and function.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | | |
Collapse
|
6
|
Bose D, Chakrabarti A. Multiple Functions of Spectrin: Convergent Effects. J Membr Biol 2020; 253:499-508. [PMID: 32990795 DOI: 10.1007/s00232-020-00142-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Spectrin is a multifunctional, multi-domain protein most well known in the membrane skeleton of mature human erythrocytes. Here we review the literature on the crosstalk of the chaperone activity of spectrin with its other functionalities. We hypothesize that the chaperone activity is derived from the surface exposed hydrophobic patches present in individual "spectrin-repeat" domains and show a competition between the membrane phospholipid binding functionality and chaperone activity of spectrin. Moreover, we show that post-translational modifications such as glycation which shield these surface exposed hydrophobic patches, reduce the chaperone function. On the other hand, oligomerization which is linked to increase of hydrophobicity is seen to increase it. We note that spectrin seems to prefer haemoglobin as its chaperone client, binding with it preferentially over other denatured proteins. Spectrin is also known to interact with unstable haemoglobin variants with a higher affinity than in the case of normal haemoglobin. We propose that chaperone activity of spectrin could be important in the cellular biochemistry of haemoglobin, particularly in the context of diseases.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
7
|
Bose D, Chakrabarti A. Chaperone potential of erythroid spectrin: Effects of hemoglobin interaction, macromolecular crowders, phosphorylation and glycation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140267. [PMID: 31470132 DOI: 10.1016/j.bbapap.2019.140267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Spectrin, the major protein component of the erythrocyte membrane skeleton has chaperone like activity and is known to bind membrane phospholipids and hemoglobin. We have probed the chaperone activity of spectrin in presence of hemoglobin and phospholipid SUVs of different compositions to elucidate the effect of phospholipid/hemoglobin binding on chaperone function. It is seen that spectrin displays a preference for hemoglobin over other substrates leading to a decrease in chaperone activity in presence of hemoglobin. A competition is seen to exist between phospholipid binding and chaperone function of spectrin, in a dose dependent manner with the greatest extent of decrease being seen in case of phospholipid vesicles containing aminophospholipids e.g. PS and PE which may have implications in diseases like hereditary spherocytosis where mutation in spectrin is implicated in its detachment from cell membrane. To gain a clearer understanding of the chaperone like activity of spectrin under in-vivo like conditions we have investigated the effect of macromolecular crowders as well as phosphorylation and glycation states on chaperone activity. It is seen that the presence of non-specific, protein and non-protein macromolecular crowders do not appreciably affect chaperone function. Phosphorylation also does not affect the chaperone function unlike glycation which progressively diminishes chaperone activity. We propose a model where chaperone clients adsorb onto spectrin's surface and processes that bind to and occlude these surfaces decrease chaperone activity.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
8
|
Taylor J, Bebawy M. Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer. Proteomics 2019; 19:e1800165. [PMID: 30520565 DOI: 10.1002/pmic.201800165] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| |
Collapse
|
9
|
Lillo AM, Lopez CL, Rajale T, Yen HJ, Magurudeniya HD, Phipps ML, Balog ERM, Sanchez TC, Iyer S, Wang HL, Michalczyk R, Rocha RC, Martinez JS. Conjugation of Amphiphilic Proteins to Hydrophobic Ligands in Organic Solvent. Bioconjug Chem 2018; 29:2654-2664. [PMID: 29979588 DOI: 10.1021/acs.bioconjchem.8b00354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.
Collapse
Affiliation(s)
| | | | | | - Hung-Ju Yen
- Institute of Chemistry , Academia Sinica , Nankang , Taipei , Taiwan 11529
| | | | | | - Eva Rose M Balog
- Department of Chemistry and Physics , University of New England , Biddeford , Maine 04005 , United States
| | | | | | - Hsing-Lin Wang
- Department of Materials Science and Engineering , Southern University of Science and Technology , Nanshan District, Shenzhen , China 518055
| | | | | | | |
Collapse
|
10
|
Schmitt DM, Barnes R, Rogerson T, Haught A, Mazzella LK, Ford M, Gilson T, Birch JWM, Sjöstedt A, Reed DS, Franks JM, Stolz DB, Denvir J, Fan J, Rekulapally S, Primerano DA, Horzempa J. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis. Front Cell Infect Microbiol 2017; 7:173. [PMID: 28536678 PMCID: PMC5423315 DOI: 10.3389/fcimb.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Rebecca Barnes
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Taylor Rogerson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Ashley Haught
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Leanne K Mazzella
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Matthew Ford
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Tricia Gilson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - James W-M Birch
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå UniversityUmeå, Sweden
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of PittsburghPittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Swanthana Rekulapally
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| |
Collapse
|
11
|
Bose D, Patra M, Chakrabarti A. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:694-702. [PMID: 28373029 DOI: 10.1016/j.bbapap.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022]
Abstract
Spectrin, a major component of the eukaryotic membrane skeleton, has been shown to have chaperone like activity. Here we investigate the pH induced changes in the structure and stability of erythroid and brain spectrin by spectroscopic methods. We also correlate these changes with modulations of chaperone potential at different pH. We have followed the pH induced structural changes by circular dichroism spectroscopy and intrinsic tryptophan fluorescence. It is seen that lowering the pH from 9 has little effect on structure of the proteins till about pH6. At pH4, there is significant change of the secondary structure of the proteins, along with a 5nm hypsochromic shift of the emission maxima. Below pH4 the proteins undergo acid denaturation. Probing exposed hydrophobic patches on the proteins using protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates that there is higher solvent accessibility of hydrophobic surfaces in both forms of spectrin at around pH4. Dynamic light scattering and 90° light scattering studies show that the both forms of spectrin forms oligomers at pH~4. Chemical unfolding data shows that these oligomers are less stable than the tetrameric form. Aggregation studies with BSA show that at pH4, both spectrins exhibit better chaperone activity. This enhancement of chaperone like activity appears to result from an increase in regions of solvent-exposed hydrophobicity and oligomeric state of the spectrins which in turn are induced by moderately acid pH. This may have in-vivo implications in cells facing stress conditions where cytoplasmic pH is lowered.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Malay Patra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India.
| |
Collapse
|
12
|
Ivanov IT, Paarvanova B. Dielectric relaxations on erythrocyte membrane as revealed by spectrin denaturation. Bioelectrochemistry 2016; 110:59-68. [PMID: 27071054 DOI: 10.1016/j.bioelechem.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/30/2022]
Abstract
We studied the effect of spectrin denaturation at 49.5°C (TA) on the dielectric relaxations and related changes in the complex impedance, Z*, complex capacitance, C*, and dielectric loss curve of suspensions containing human erythrocytes, erythrocyte ghost membranes (EMs) and Triton-X-100 residues of EMs. The loss curve prior to, minus the loss curve after TA, resulted in a bell-shaped peak at 1.5MHz. The changes in the real and imaginary components of Z* and C* at TA, i.e., ΔZre, ΔZim, ΔCre and ΔCim, calculated in the same way, strongly varied with frequency. Between 1.0 and 12MHz the -ΔZim vs ΔZre, and ΔCim vs ΔCre plots depicted semicircles with critical frequencies, fcr, at 2.5MHz expressing recently reported relaxation of spectrin dipoles. Between 0.02 and 1.0MHz the -ΔZim vs ΔZre plot exhibited another relaxation whose fcr mirrored that of beta relaxation. This relaxation was absent on Triton-X-shells, while on erythrocytes and EMs it was inhibited by selective dissociation of either attachment sites between spectrin and bilayer. Considering above findings and inaccessibility of cytosole to outside field at such frequencies, the latter relaxation was assumed originating from a piezoelectric effect on the highly deformable spectrin filaments.
Collapse
Affiliation(s)
- I T Ivanov
- Dept. of Physics, Biophysics, Reontgenology and Radiology, Medical Faculty, Thracian University, Stara Zagora 6000, Bulgaria.
| | - B Paarvanova
- Dept. of Physics, Biophysics, Reontgenology and Radiology, Medical Faculty, Thracian University, Stara Zagora 6000, Bulgaria
| |
Collapse
|
13
|
Das D, Pramanik U, Patra M, Banerjee M, Chakrabarti A. Differential interactions of imatinib mesylate with the membrane skeletal protein spectrin and hemoglobin. RSC Adv 2016. [DOI: 10.1039/c5ra27276a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anti-leukaemia drug imatinib has been shown to bind to spectrin, and to hemoglobin in its oxy-form with binding dissociation constants of 48 μM and 63 μM at 25 °C respectively.
Collapse
Affiliation(s)
- Debashree Das
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- HBNI
- Kolkata 700064
- India
| | - Ushasi Pramanik
- Biophysics, Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | - Malay Patra
- Chemistry Department
- University of Calcutta
- Kolkata 700009
- India
| | | | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- HBNI
- Kolkata 700064
- India
| |
Collapse
|
14
|
Verrastro I, Tveen-Jensen K, Woscholski R, Spickett CM, Pitt AR. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic Biol Med 2016; 90:24-34. [PMID: 26561776 DOI: 10.1016/j.freeradbiomed.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Karina Tveen-Jensen
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Rudiger Woscholski
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
15
|
Mitra M, Chaudhuri A, Patra M, Mukhopadhyay C, Chakrabarti A, Chattopadhyay A. Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility. J Fluoresc 2015; 25:707-17. [DOI: 10.1007/s10895-015-1556-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
16
|
Chattopadhyay A, Haldar S. Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 2014; 47:12-9. [PMID: 23981188 DOI: 10.1021/ar400006z] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore in the protein. In this Account, we focus on REES to monitor organization and dynamics of soluble and membrane proteins utilizing intrinsic protein fluorescence. We discuss here the application of REES in various conformations of proteins. While application of REES to proteins in native conformation has been in use for a long time, our work highlights the potential of this approach in case of molten globule and denatured conformations. For example, we have demonstrated the presence of residual structure, that could not be detected using other methods, by REES of denatured spectrin. Given the functional relevance of such residual structures, these results are very far reaching. We discuss here the application of REES to molten globule conformation and to the green fluorescent protein (GFP). The case of GFP is particularly interesting since the dipolar field in this case is provided by the protein matrix itself and not confined water. We envision that future applications of REES in proteins will involve generating a dynamic hydration map of the protein, which would allow us to explore protein function in terms of local dynamics and hydration.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007 India
| | - Sourav Haldar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007 India
| |
Collapse
|
17
|
Thakur R, Das A, Chakraborty A. Interaction of human serum albumin with liposomes of saturated and unsaturated lipids with different phase transition temperatures: a spectroscopic investigation by membrane probe PRODAN. RSC Adv 2014. [DOI: 10.1039/c4ra01214c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction of human serum albumin (HSA) with liposomes made of saturated and unsaturated phosphocholines has been studied using circular dichroism (CD), steady state and time resolved fluorescence spectroscopic techniques.
Collapse
Affiliation(s)
- Raina Thakur
- Department of Chemistry
- Indian Institute of Technology Indore
- , India
| | - Anupam Das
- Department of Chemistry
- Indian Institute of Technology Indore
- , India
| | | |
Collapse
|
18
|
Grau M, Pauly S, Ali J, Walpurgis K, Thevis M, Bloch W, Suhr F. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013; 8:e56759. [PMID: 23424675 PMCID: PMC3570529 DOI: 10.1371/journal.pone.0056759] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Methods/Findings Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. Conclusion/Significance This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BIOMED RESEARCH INTERNATIONAL 2012; 2013:374395. [PMID: 23509714 PMCID: PMC3591105 DOI: 10.1155/2013/374395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.
Collapse
|
20
|
Lu W, Schneider M, Neumann S, Jaeger VM, Taranum S, Munck M, Cartwright S, Richardson C, Carthew J, Noh K, Goldberg M, Noegel AA, Karakesisoglou I. Nesprin interchain associations control nuclear size. Cell Mol Life Sci 2012; 69:3493-509. [PMID: 22653047 PMCID: PMC11114684 DOI: 10.1007/s00018-012-1034-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.
Collapse
Affiliation(s)
- Wenshu Lu
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Maria Schneider
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sascha Neumann
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Verena-Maren Jaeger
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Surayya Taranum
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Martina Munck
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - James Carthew
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Kowoon Noh
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | |
Collapse
|
21
|
Mosqueira M, Willmann G, Zeiger U, Khurana TS. Expression profiling reveals novel hypoxic biomarkers in peripheral blood of adult mice exposed to chronic hypoxia. PLoS One 2012; 7:e37497. [PMID: 22629407 PMCID: PMC3358260 DOI: 10.1371/journal.pone.0037497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/24/2012] [Indexed: 12/31/2022] Open
Abstract
Hypoxia induces a myriad of changes including an increase in hematocrit due to erythropoietin (EPO) mediated erythropoiesis. While hypoxia is of importance physiologically and clinically, lacunae exist in our knowledge of the systemic and temporal changes in gene expression occurring in blood during the exposure and recovery from hypoxia. To identify these changes expression profiling was conducted on blood obtained from cohorts of C57Bl-10 wild type mice that were maintained at normoxia (NX), exposed for two weeks to normobaric chronic hypoxia (CH) or two weeks of CH followed by two weeks of normoxic recovery (REC). Using stringent bioinformatic cut-offs (0% FDR, 2 fold change cut-off), 230 genes were identified and separated into four distinct temporal categories. Class I) contained 1 transcript up-regulated in both CH and REC; Class II) contained 202 transcripts up-regulated in CH but down-regulated after REC; Class III) contained 9 transcripts down-regulated both in CH and REC; Class IV) contained 18 transcripts down-regulated after CH exposure but up-regulated after REC. Profiling was independently validated and extended by analyzing expression levels of selected genes as novel biomarkers from our profile (e.g. spectrin alpha-1, ubiquitin domain family-1 and pyrroline-5-carboxylate reductase-1) by performing qPCR at 7 different time points during CH and REC. Our identification and characterization of these genes define transcriptome level changes occurring during chronic hypoxia and normoxic recovery as well as novel blood biomarkers that may be useful in monitoring a variety of physiological and pathological conditions associated with hypoxia.
Collapse
Affiliation(s)
- Matias Mosqueira
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
22
|
Cytoskeletal interactions at the nuclear envelope mediated by nesprins. Int J Cell Biol 2012; 2012:736524. [PMID: 22518138 PMCID: PMC3296292 DOI: 10.1155/2012/736524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 11/29/2022] Open
Abstract
Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell.
Collapse
|
23
|
Abstract
BACKGROUND INFORMATION Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin-binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin-associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N-terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin-like proteins could act as structural nuclear ABPs in plants. RESULTS We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α- and β-spectrin chains that cross-react in plant nuclei. Their role as nuclear ABPs was analysed by co-immunoprecipitation and IF (immunofluorescence) co-localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non-ionic detergent, and in low- and high-salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin-like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co-immunoprecipitate and co-localize with actin. CONCLUSIONS These results reveal that the plant nucleus contains spectrin-like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin-like proteins could be involved in multiple nuclear functions.
Collapse
|
24
|
Navarro-Garcia F, Sonnested M, Teter K. Host-Toxin Interactions Involving EspC and Pet, Two Serine Protease Autotransporters of the Enterobacteriaceae. Toxins (Basel) 2010; 2:1134-1147. [PMID: 21243083 PMCID: PMC3020798 DOI: 10.3390/toxins2051134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 12/11/2022] Open
Abstract
EspC and Pet are toxins secreted by the diarrheagenic enteropathogenic and enteroaggregative Escherichia coli pathotypes, respectively. Both toxins have a molecular mass around 110 kDa and belong to the same protein family called Serine Protease Autotransporters of the Enterobacteriaceae (SPATE). Furthermore, both toxins act within the cytosol of intoxicated epithelial cells to disrupt the architecture of the actin cytoskeleton. This cytopathic and enterotoxic effect results from toxin cleavage of the actin-binding protein fodrin, although the two toxins recognize different cleavage sites on fodrin. EspC and Pet also have dramatically different mechanisms of entering the target cell which appear dependent upon the E. coli pathotype. In this review, we compare/contrast EspC and Pet in regards to their mode of delivery into the target cell, their effects on fodrin and the actin cytoskeleton, and their possible effects on the physiology of the intestinal epithelial cell.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-Zacatenco), Ap. Postal 14-740, 07000 México DF, Mexico;
| | - Michael Sonnested
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-Zacatenco), Ap. Postal 14-740, 07000 México DF, Mexico;
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA;
| |
Collapse
|
25
|
Chakrabarti A, Datta P, Bhattacharya D, Basu S, Saha S. Oxidative crosslinking, spectrin and membrane interactions of hemoglobin mixtures in HbEbeta-thalassemia. ACTA ACUST UNITED AC 2009; 13:361-8. [PMID: 19055866 DOI: 10.1179/102453308x343455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The authors have studied the interactions of intact hemoglobin mixtures of HbE and HbA, with the major erythroid membrane skeletal protein, spectrin and tailor-made phospholipids membranes containing aminophospholipids to understand the role of spectrin and phospholipids of erythrocytes in the overall pathophysiology of the hemoglobin disorders. Hemoglobin mixtures were isolated and purified from the peripheral blood samples of HbE carriers and different HbEbeta thalassemia patients, taken for diagnosis. Spectrin binding was studied by fluorescence and oxidative crosslinking, by SDS-PAGE. Membrane perturbation experiments were carried out to study the leakage of the self-quenching fluorophore, carboxyfluorescein, entrapped in the phospholipid vesicles. Hemoglobin mixtures with elevated levels of HbE showed stronger interactions with spectrin reflected in the decrease in binding dissociation constant from 17 to 5 muM upon increase in HbE% from about 30 to 90% in the hemolysates. The yield of the spectrin crosslinked complexes of such hemoglobin mixtures also increased with increase in HbE levels. Presence of ATP/Mg and DPG were found to decrease the overall yield of such complexes and the binding affinity of hemoglobins to spectrin. HbE rich hemolysates also induced greater leakage of entrapped carboxyfluorescein (CF) from phospholipid membranes containing aminophospholipids. Results from this study indicate the roles of skeletal proteins and aminophospholipids, particularly under oxidative stress conditions to be important in the premature destruction of erythrocytes in hemoglobin disorders, e.g. HbEbeta-thalassaemia.
Collapse
|
26
|
Riley RS, Williams D, Ross M, Zhao S, Chesney A, Clark BD, Ben-Ezra JM. Bone marrow aspirate and biopsy: a pathologist's perspective. II. interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal 2009; 23:259-307. [PMID: 19774631 PMCID: PMC6648980 DOI: 10.1002/jcla.20305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/19/2009] [Indexed: 12/11/2022] Open
Abstract
Bone marrow examination has become increasingly important for the diagnosis and treatment of hematologic and other illnesses. Morphologic evaluation of the bone marrow aspirate and biopsy has recently been supplemented by increasingly sophisticated ancillary assays, including immunocytochemistry, cytogenetic analysis, flow cytometry, and molecular assays. With our rapidly expanding knowledge of the clinical and biologic diversity of leukemia and other hematologic neoplasms, and an increasing variety of therapeutic options, the bone marrow examination has became more critical for therapeutic monitoring and planning optimal therapy. Sensitive molecular techniques, in vitro drug sensitivity testing, and a number of other special assays are available to provide valuable data to assist these endeavors. Fortunately, improvements in bone marrow aspirate and needle technology has made the procurement of adequate specimens more reliable and efficient, while the use of conscious sedation has improved patient comfort. The procurement of bone marrow specimens was reviewed in the first part of this series. This paper specifically addresses the diagnostic interpretation of bone marrow specimens and the use of ancillary techniques.
Collapse
Affiliation(s)
- Roger S Riley
- Medical College of Virginia Hospitals of Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Merkle D, Kahya N, Schwille P. Reconstitution and Anchoring of Cytoskeleton inside Giant Unilamellar Vesicles. Chembiochem 2008; 9:2673-81. [DOI: 10.1002/cbic.200800340] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Datta P, Chakrabarty S, Chakrabarty A, Chakrabarti A. Spectrin interactions with globin chains in the presence of phosphate metabolites and hydrogen peroxide: implications for thalassaemia. J Biosci 2007; 32:1147-51. [PMID: 17954975 DOI: 10.1007/s12038-007-0116-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have shown the differential interactions of the erythroid skeletal protein spectrin with the globin subunits of adult haemoglobin (HbA); these indicate a preference for alpha-globin over that for beta-globin and intact HbA in an adenosine 5'-triphosphate (ATP)-dependent manner. The presence of Mg/ATP led to an appreciable decrease in the binding affinity of the alpha-globin chain to spectrin and the overall yield of globin-spectrin cross-linked complexes formed in the presence of hydrogen peroxide. Similar effects were also seen in the presence of 2-,3-diphosphoglycerate (2,3 DPG), the other important phosphate metabolite of erythrocytes. The binding affinity and yield of cross-linked high molecular weight complexes (HMWCs) formed under oxidative conditions were significantly higher in alpha-globin compared with intact haemoglobin, HbA and the beta-globin chain. The results of this study indicate a possible correlation of the preferential spectrin binding of the alpha-globin chain over that of the beta-globin in the haemoglobin disorder beta-thalassaemia.
Collapse
Affiliation(s)
- Poppy Datta
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | | | | | | |
Collapse
|