1
|
Yang Y, Li M, Ma Y, Ye W, Si Y, Zheng X, Liu H, Cheng L, Zhang L, Zhang H, Zhang X, Lei Y, Shen L, Zhang F, Ma H. LncRNA NEAT1 Potentiates SREBP2 Activity to Promote Inflammatory Macrophage Activation and Limit Hantaan Virus Propagation. Front Microbiol 2022; 13:849020. [PMID: 35495674 PMCID: PMC9044491 DOI: 10.3389/fmicb.2022.849020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.
Collapse
Affiliation(s)
- Yongheng Yang
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Mengyun Li
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Ma
- Department of Emergency, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yue Si
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xijing Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Lixin Shen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han M, Han T, Wu XA, Liu R. Viruses Run: The Evasion Mechanisms of the Antiviral Innate Immunity by Hantavirus. Front Microbiol 2021; 12:759198. [PMID: 34659193 PMCID: PMC8516094 DOI: 10.3389/fmicb.2021.759198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Hantavirus can cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in America, with high mortality and unknown mechanisms. Innate immunity is the host's first-line defense to bridge the acquired immunity against viral infections. However, hantavirus has evolved various strategies in both molecular and cellular aspects to evade the host's natural immune surveillance. The Interferon-I (IFN-I) signaling pathway, a central link of host defense, induces various antiviral proteins to control the infection. This paper summarizes the molecular mechanisms of hantavirus evasion mechanisms of the IFN signaling pathway and cellular processes such as regulated cell death and cell stress. Besides, hantavirus could also evade immune surveillance evasion through cellular mechanisms, such as upregulating immune checkpoint molecules interfering with viral infections. Understanding hantavirus's antiviral immune evasion mechanisms will deepen our understanding of its pathogenesis and help us develop more effective methods to control and eliminate hantavirus.
Collapse
Affiliation(s)
- Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Ruixue Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Yutong Wang
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Wenjie Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Ziwei Yang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Mingwei Han
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Tixin Han
- School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Xing-an Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an, China
| |
Collapse
|
3
|
Effect of thermolabile toxin from Yersinia pseudotuberculosis on functions of innate immunity cells. Bull Exp Biol Med 2014; 157:483-7. [PMID: 25110089 DOI: 10.1007/s10517-014-2597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 10/24/2022]
Abstract
The thermolabile toxin of Yersinia pseudotuberculosis produces a selective dose-dependent stimulating effect on functional activity of innate immunity cells. Prolonged apoptosis-inducing action of the toxin was associated with activation of enzymes of the oxygen-dependent system (LDH and myeloperoxidase) at the early terms of observation (up to 3 h). In turn, increased number of macrophages with apoptotic changes was noted at the early stages of contact with the thermolabile toxin (5 h), and its further growth was observed against the background of activation of mitochondrial enzymes and production of NO metabolites.
Collapse
|
4
|
Seoul virus-infected rat lung endothelial cells and alveolar macrophages differ in their ability to support virus replication and induce regulatory T cell phenotypes. J Virol 2012; 86:11845-55. [PMID: 22915818 DOI: 10.1128/jvi.01233-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hantaviruses cause a persistent infection in reservoir hosts that is attributed to the upregulation of regulatory responses and downregulation of proinflammatory responses. To determine whether rat alveolar macrophages (AMs) and lung microvascular endothelial cells (LMVECs) support Seoul virus (SEOV) replication and contribute to the induction of an environment that polarizes CD4(+) T cell differentiation toward a regulatory T (Treg) cell phenotype, cultured primary rat AMs and LMVECs were mock infected or infected with SEOV and analyzed for viral replication, cytokine and chemokine responses, and expression of cell surface markers that are related to T cell activation. Allogeneic CD4(+) T cells were cocultured with SEOV-infected or mock-infected AMs or LMVECs and analyzed for helper T cell (i.e., Treg, Th17, Th1, and Th2) marker expression and Treg cell frequency. SEOV RNA and infectious particles in culture media were detected in both cell types, but at higher levels in LMVECs than in AMs postinfection. Expression of Ifnβ, Ccl5, and Cxcl10 and surface major histocompatibility complex class II (MHC-II) and MHC-I was not altered by SEOV infection in either cell type. SEOV infection significantly increased Tgfβ mRNA in AMs and the amount of programmed cell death 1 ligand 1 (PD-L1) in LMVECs. SEOV-infected LMVECs, but not AMs, induced a significant increase in Foxp3 expression and Treg cell frequency in allogeneic CD4(+) T cells, which was virus replication and cell contact dependent. These data suggest that in addition to supporting viral replication, AMs and LMVECs play distinct roles in hantavirus persistence by creating a regulatory environment through increased Tgfβ, PD-L1, and Treg cell activity.
Collapse
|
5
|
Abstract
Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans.
Collapse
Affiliation(s)
- Judith D. Easterbrook
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sabra L. Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|