1
|
Ghosh Dastider S, Abdullah A, Jasim I, Yuksek NS, Dweik M, Almasri M. Low concentration E. coli O157:H7 bacteria sensing using microfluidic MEMS biosensor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:125009. [PMID: 30599553 DOI: 10.1063/1.5043424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports the design, fabrication, and testing of a microfluidic MEMS biosensor for rapid sensing of low concentration Escherichia coli O157:H7. It consists of a specially designed focusing and sensing region, which enables the biosensor to detect low concentration of bacterial cells. The focusing region consists of a ramped vertical electrode pair made of electroplated gold along with tilted thin film finger pairs (45°) embedded inside a microchannel. The focusing region generates positive dielectrophoresis force, which moves the cells towards the edges of the tilted thin film electrode fingers, located at the center of the microchannel. The fluidic drag force then carries the focused cells to the sensing region, where three interdigitated electrode arrays (IDEAs) with 30, 20, and 10 pairs, respectively, are embedded inside the microchannel. This technique resulted in highly concentrated samples in the sensing region. The sensing IDEAs are functionalized with the anti-E. coli antibody for specific sensing of E. coli 0157:H7. As E. coli binds to the antibody, it results in an impedance change, which is measured across a wide frequency range of 100 Hz-10 MHz. The biosensor was fabricated on a glass substrate using the SU8 epoxy resist to form the microchannel, gold electroplating to form the vertical focusing electrode pair, a thin gold film to form the sensing electrode, the finger electrodes, traces and bonding pads, and polydimethylsiloxane to seal the device. The microfluidic impedance biosensor was tested with various low concentration bacterial samples and was able to detect bacterial concentration, as low as 39 CFU/ml with a total sensing time of 2 h.
Collapse
Affiliation(s)
- Shibajyoti Ghosh Dastider
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Amjed Abdullah
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Ibrahem Jasim
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Nuh S Yuksek
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Majed Dweik
- Department of Co-operative Research, Lincoln University, Jefferson City, Missouri 65101, USA
| | - Mahmoud Almasri
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
2
|
Pitt WG, Alizadeh M, Husseini GA, McClellan DS, Buchanan CM, Bledsoe CG, Robison RA, Blanco R, Roeder BL, Melville M, Hunter AK. Rapid separation of bacteria from blood-review and outlook. Biotechnol Prog 2016; 32:823-39. [PMID: 27160415 DOI: 10.1002/btpr.2299] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/03/2016] [Indexed: 12/11/2022]
Abstract
The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:823-839, 2016.
Collapse
Affiliation(s)
- William G Pitt
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Mahsa Alizadeh
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Ghaleb A Husseini
- Dept. of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | | | - Clara M Buchanan
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Colin G Bledsoe
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Richard A Robison
- Dept. of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Rae Blanco
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | | | - Madison Melville
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Alex K Hunter
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| |
Collapse
|
3
|
Kim M, Jung T, Kim Y, Lee C, Woo K, Seol JH, Yang S. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens Bioelectron 2015; 74:1011-5. [DOI: 10.1016/j.bios.2015.07.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
|
4
|
Development of a microfluidic device for cell concentration and blood cell-plasma separation. Biomed Microdevices 2015; 17:115. [DOI: 10.1007/s10544-015-0017-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Sajeesh P, Manasi S, Doble M, Sen AK. A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells. LAB ON A CHIP 2015; 15:3738-3748. [PMID: 26235533 DOI: 10.1039/c5lc00598a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports a novel hydrodynamic technique for sorting of droplets and cells based on size and deformability. The device comprises two modules: a focusing and spacing control module and a sorting module. The focusing and spacing control module enables focusing of objects present in a sample onto one of the side walls of a channel with controlled spacing between them using a sheath fluid. A 3D analytical model is developed to predict the sheath-to-sample flow rate ratio required to facilitate single-file focusing and maintain the required spacing between a pair of adjacent objects. Experiments are performed to demonstrate focusing and spacing control of droplets (size 5-40 μm) and cells (HL60, size 10-25 μm). The model predictions compare well with experimental data in terms of focusing and spacing control within 9%. In the sorting module, the main channel splits into two branch channels (straight and side branches) with the flow into these two channels separated by a "dividing streamline". A sensing channel and a bypass channel control the shifting of the dividing streamline depending on the object size and deformability. While resistance offered by individual droplets of different sizes has been studied in our previous work (P. Sajeesh, M. Doble and A. K. Sen, Biomicrofluidics, 2014, 8, 1-23), here we present resistance of individual cells (HL60) as a function of size. A theoretical model is developed and used for the design of the sorter. Experiments are performed for size-based sorting of droplets (sizes 25 and 40 μm, 10 and 15 μm) and HL60 cells (sizes 11 μm and 19 μm) and deformability-based sorting of droplets (size 10 ± 1.0 μm) and polystyrene microbeads (size 10 ± 0.2 μm). The performance of the device for size- and deformability-based sorting is characterized in terms of sorting efficiency. The proposed device could be potentially used as a diagnostic tool for sorting of larger tumour cells from smaller leukocytes.
Collapse
Affiliation(s)
- P Sajeesh
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
6
|
Krizkova S, Nguyen HV, Stanisavljevic M, Kopel P, Vaculovicova M, Adam V, Kizek R. Microchip capillary electrophoresis: quantum dots and paramagnetic particles for bacteria immunoseparation: rapid superparamagnetic-beads-based automated immunoseparation of Zn-Proteins from Staphylococcus aureus with nanogram yield. Methods Mol Biol 2015; 1274:67-79. [PMID: 25673483 DOI: 10.1007/978-1-4939-2353-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The emergence of drug-resistant bacteria and new or changing infectious pathogens is an important public health problem as well as a serious socioeconomic concern. Immunomagnetic separation-based methods create new possibilities for rapidly recognizing many of these pathogens. Nanomaterial-based techniques including fluorescent labeling by quantum dots as well as immunoextraction by magnetic particles are excellent tools for such purposes. Moreover, the combination with capillary electrophoresis in miniaturized microchip arrangement brings numerous benefits such as fast and rapid analysis, low sample consumption, very sensitive electrochemical and fluorescent detection, portable miniaturized instrumentation, and rapid and inexpensive device fabrication. Here the use of superparamagnetic particle-based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II)-containing proteins (Zn-proteins) is reported using a robotic pipetting system speeding up the sample preparation and enabling to analyze 48 real samples within 6 h. Cell lysis and Zn-protein extractions were obtained from a minimum of 100 cells with the sufficient yield for SDS-PAGE (several tens ng of proteins).
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University, Zemedelska 1, 613 00, Brno, Czech Republic, European Union
| | | | | | | | | | | | | |
Collapse
|
7
|
Berenguel-Alonso M, Granados X, Faraudo J, Alonso-Chamarro J, Puyol M. Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip. Anal Bioanal Chem 2014; 406:6607-16. [DOI: 10.1007/s00216-014-8100-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
8
|
Sajeesh P, Doble M, Sen AK. Hydrodynamic resistance and mobility of deformable objects in microfluidic channels. BIOMICROFLUIDICS 2014; 8:054112. [PMID: 25538806 PMCID: PMC4222326 DOI: 10.1063/1.4897332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/25/2014] [Indexed: 05/12/2023]
Abstract
This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio [Formula: see text] and droplet-to-medium viscosity ratio [Formula: see text]. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet [Formula: see text] with the droplet size [Formula: see text] and viscosity [Formula: see text]. A simple theoretical model is developed to obtain closed form expressions for droplet mobility [Formula: see text] and [Formula: see text]. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility [Formula: see text] and induced hydrodynamic resistance [Formula: see text]. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio [Formula: see text] and viscosity ratio [Formula: see text], which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance [Formula: see text] of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance [Formula: see text] is related to the cell concentration and apparent viscosity of the cells.
Collapse
Affiliation(s)
- P Sajeesh
- Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai-600036, India and Department of Biotechnology, Indian Institute of Technology Madras , Chennai-600036, India
| | - M Doble
- Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai-600036, India and Department of Biotechnology, Indian Institute of Technology Madras , Chennai-600036, India
| | - A K Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai-600036, India and Department of Biotechnology, Indian Institute of Technology Madras , Chennai-600036, India
| |
Collapse
|
9
|
David S, Polonschii C, Gheorghiu M, Bratu D, Dobre A, Gheorghiu E. Assessment of pathogenic bacteria using periodic actuation. LAB ON A CHIP 2013; 13:3192-3198. [PMID: 23807196 DOI: 10.1039/c3lc50411e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new analytical platform for the assessment of pathogenic bacteria is presented. It is based on a robust technology which is able to amplify the signal to noise ratio providing fast and sensitive detection of target pathogenic bacteria. The system uses a custom made AC electrical impedance analyser to measure, using a lab on a chip platform, the oscillations of magnetically labelled analytes when applying a periodic magnetic field. The concentration of pathogenic Escherichia coli O157:H7 chosen as bacterial model was determined based on the amplitude of the electrical impedance oscillations at a selected AC frequency. The analytical platform provides a limit of detection of 10(2) cells ml(-1), has a fast analysis time, and is amenable for the detection of other target cells. The system has simple design suitable for portability and automated operation.
Collapse
Affiliation(s)
- Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
10
|
Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. LAB ON A CHIP 2012; 12:3249-66. [PMID: 22859057 DOI: 10.1039/c2lc40630f] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Effective pathogen detection is an essential prerequisite for the prevention and treatment of infectious diseases. Despite recent advances in biosensors, infectious diseases remain a major cause of illnesses and mortality throughout the world. For instance in developing countries, infectious diseases account for over half of the mortality rate. Pathogen detection platforms provide a fundamental tool in different fields including clinical diagnostics, pathology, drug discovery, clinical research, disease outbreaks, and food safety. Microfluidic lab-on-a-chip (LOC) devices offer many advantages for pathogen detection such as miniaturization, small sample volume, portability, rapid detection time and point-of-care diagnosis. This review paper outlines recent microfluidic based devices and LOC design strategies for pathogen detection with the main focus on the integration of different techniques that led to the development of sample-to-result devices. Several examples of recently developed devices are presented along with respective advantages and limitations of each design. Progresses made in biomarkers, sample preparation, amplification and fluid handling techniques using microfluidic platforms are also covered and strategies for multiplexing and high-throughput analysis, as well as point-of-care diagnosis, are discussed.
Collapse
Affiliation(s)
- Amir M Foudeh
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | |
Collapse
|