1
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Liu C, Yuan D, Crawford R, Sarkar R, Hu B. Directly Cooling Gut Prevents Mortality in the Rat Model of Reboa Management of Lethal Hemorrhage. Shock 2021; 56:813-823. [PMID: 33555843 PMCID: PMC8329109 DOI: 10.1097/shk.0000000000001744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving technique for the management of lethal torso hemorrhage. Its benefit, however, must be weighed against the lethal distal organ ischemia-reperfusion injury (IRI). This study uses a novel direct gut cooling technique to manage the distal organ IRI. METHODS A rat lethal hemorrhage model was established by bleeding of 50% of the estimated total blood volume via inferior vena cava. A novel TransRectal Intra-Colon (TRIC) temperature management device was positioned in the descending colon either to maintain intra-colon temperature at 37°C or 12°C. The upper body temperature was maintained at as close to 37°C as possible in both groups. A 2F Fogarty balloon catheter was inserted via the femoral artery into the descending thoracic aorta for the implementation of REBOA. After REBOA, the balloon was deflated, and the shed blood was returned. The temperature managements were continued for additional 180 to 270 min during the post-REBOA period. RESULTS All rats subjected to REBOA management of lethal hemorrhage at 37°C had severe histopathological gut and abdominal organ IRI, severe functional deficits, and died within 24 h with 100% mortality. By contrast, directly cooling the colon to 10°C to 12°C with the novel TRIC device abolished mortality, and dramatically improved ABG parameters, prevented the abdominal organ injury, and reduced the functional deficits during the 7-day post-REBOA period. CONCLUSIONS Direct trans-rectal colon cooling during REBOA management of lethal hemorrhage offers extraordinary functional improvement and amazing tissue protection, and abolishes mortality.
Collapse
Affiliation(s)
- Chunli Liu
- Veterans Affairs Maryland Health Center System,10 North Greene Street, Baltimore, MD 21201
| | - Dong Yuan
- Departments of Anesthesiology and Surgery, Shock Trauma and Anesthesiology Research Center University of Maryland School of Medicine, Baltimore, MD
| | - Robert Crawford
- Departments of Anesthesiology and Surgery, Shock Trauma and Anesthesiology Research Center University of Maryland School of Medicine, Baltimore, MD
| | - Rajabrata Sarkar
- Departments of Anesthesiology and Surgery, Shock Trauma and Anesthesiology Research Center University of Maryland School of Medicine, Baltimore, MD
| | - Bingren Hu
- Departments of Anesthesiology and Surgery, Shock Trauma and Anesthesiology Research Center University of Maryland School of Medicine, Baltimore, MD
- Veterans Affairs Maryland Health Center System,10 North Greene Street, Baltimore, MD 21201
| |
Collapse
|
3
|
Bhat A, Podstawczyk D, Walther BK, Aggas JR, Machado-Aranda D, Ward KR, Guiseppi-Elie A. Toward a hemorrhagic trauma severity score: fusing five physiological biomarkers. J Transl Med 2020; 18:348. [PMID: 32928219 PMCID: PMC7490913 DOI: 10.1186/s12967-020-02516-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND To introduce the Hemorrhage Intensive Severity and Survivability (HISS) score, based on the fusion of multi-biomarker data; glucose, lactate, pH, potassium, and oxygen tension, to serve as a patient-specific attribute in hemorrhagic trauma. MATERIALS AND METHODS One hundred instances of Sensible Fictitious Rationalized Patient (SFRP) data were synthetically generated and the HISS score assigned by five clinically active physician experts (100 [5]). The HISS score stratifies the criticality of the trauma patient as; low(0), guarded(1), elevated(2), high(3) and severe(4). Standard classifier algorithms; linear support vector machine (SVM-L), multi-class ensemble bagged decision tree (EBDT), artificial neural network with bayesian regularization (ANN:BR) and possibility rule-based using function approximation (PRBF) were evaluated for their potential to similarly classify and predict a HISS score. RESULTS SVM-L, EBDT, ANN:BR and PRBF generated score predictions with testing accuracies (majority vote) corresponding to 0.91 ± 0.06, 0.93 ± 0.04, 0.92 ± 0.07, and 0.92 ± 0.03, respectively, with no statistically significant difference (p > 0.05). Targeted accuracies of 0.99 and 0.999 could be achieved with SFRP data size and clinical expert scores of 147[7](0.99) and 154[9](0.999), respectively. CONCLUSIONS The predictions of the data-driven model in conjunction with an adjunct multi-analyte biosensor intended for point-of-care continual monitoring of trauma patients, can aid in patient stratification and triage decision-making.
Collapse
Affiliation(s)
- Ankita Bhat
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Brandon K. Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
| | - John R. Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - David Machado-Aranda
- Departments of Emergency Medicine and Biomedical Engineering, Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kevin R. Ward
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030 USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 USA
- ABTECH Scientific, Inc, Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219 USA
| |
Collapse
|
4
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|
5
|
Bhat A, Amanor-Boadu JM, Guiseppi-Elie A. Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor. ACS Sens 2020; 5:500-509. [PMID: 31948224 DOI: 10.1021/acssensors.9b02336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A pH-responsive, poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based hydrogel has been fashioned into an impedimetric pH sensor for the continual measurement and monitoring of tissue acidosis that can arise due to hemorrhaging trauma. Four hydrogel systems molecularly engineered to influence water distribution and ionic abundance were studied: a cationogenic primary amine, N-(2-aminoethyl) methacrylate (AEMA), a tertiary amine moiety, N,N-(2-dimethylamino)ethyl methacrylate (DMAEMA), and a combined AEMA-DMAEMA formulation. Electrochemical impedance spectroscopy (EIS) of hydrogel discs held between platinized Type 304 stainless steel mesh electrodes in pH-adjusted 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid sodium salt (HEPES) buffer and equivalent circuit modeling indicated that the AEMA hydrogel had the highest sensitivity containing the relevant pathophysiological range (pH 7.0-8.0). Thus, the AEMA formulation was studied at 0, 1, 3, 4.4, and 30 mol % AEMA. The 1 mol % AEMA was found to significantly (p < 0.05) discern nominal pH (7.35, 7.40, 7.45). The Taguchi Design of Experiments approach was employed and confirmed composition as a factor and 1 mol % AEMA to be the most robust. DMAEMA (0, 4.4, 14, 30 mol %) and AEMA-DMAEMA (0, 4.4, 14, 30 mol %) allowed the use of the one-factor Response Surface Methodology optimizer to confirm the AEMA 1 mol % system to be most robust, sensitive, and possessing optimal sensitivity in the pathophysiological pH sensing range (7.35-7.45) for hemorrhagic trauma. This composition was fashioned as a responsive membrane on a microlithographically fabricated interdigitated microsensor electrode and the sensitivity was determined using R(QR)(QR) analysis. Water distribution within the AEMA (0, 1, 4.4, 30 mol %), determined by gravimetric analysis and differential scanning calorimetry, revealed a strong anticorrelation between nonfreezable bound water and pH sensitivity (-0.82) and was in good agreement with the total hydration (-0.70). Nonfreezable bound water was found to be the most strongly correlated factor that governs the pH response of hydrogels.
Collapse
Affiliation(s)
- Ankita Bhat
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Judy M. Amanor-Boadu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, United States
| |
Collapse
|
6
|
Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm 2018; 544:319-334. [DOI: 10.1016/j.ijpharm.2018.02.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
|
7
|
Thyparambil AA, Bazin I, Guiseppi-Elie A. Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection: Example of Ochratoxin. Toxins (Basel) 2017. [PMCID: PMC5744115 DOI: 10.3390/toxins9120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycotoxin contamination of food and feed is now ubiquitous. Exposures to mycotoxin via contact or ingestion can potentially induce adverse health outcomes. Affordable mycotoxin-monitoring systems are highly desired but are limited by (a) the reliance on technically challenging and costly molecular recognition by immuno-capture technologies; and (b) the lack of predictive tools for directing the optimization of alternative molecular recognition modalities. Our group has been exploring the development of ochratoxin detection and monitoring systems using the peptide NFO4 as the molecular recognition receptor in fluorescence, electrochemical and multimodal biosensors. Using ochratoxin as the model mycotoxin, we share our perspective on addressing the technical challenges involved in biosensor fabrication, namely: (a) peptide receptor design; and (b) performance evaluation. Subsequently, the scope and utility of molecular modeling and simulation (MMS) approaches to address the above challenges are described. Informed and enabled by phage display, the subsequent application of MMS approaches can rationally guide subsequent biomolecular engineering of peptide receptors, including bioconjugation and bioimmobilization approaches to be used in the fabrication of peptide biosensors. MMS approaches thus have the potential to reduce biosensor development cost, extend product life cycle, and facilitate multi-analyte detection of mycotoxins, each of which positively contributes to the overall affordability of mycotoxin biosensor monitoring systems.
Collapse
Affiliation(s)
- Aby A. Thyparambil
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ingrid Bazin
- Laboratoire de Génie de l’Environnement Industriel( LGEI), Institut Mines Telecom (IMT) Mines Ales, University of Montpellier, 30100 Ales, France;
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
- Correspondence: ; Tel.: +1-979-458-1239; Fax: +1-979-458-8219
| |
Collapse
|
8
|
Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification. MICROARRAYS 2015; 4:474-89. [PMID: 27600235 PMCID: PMC4996405 DOI: 10.3390/microarrays4040474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/02/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023]
Abstract
Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.
Collapse
|
9
|
Abstract
A variety of point-of-care monitors for the measurement of hematocrit, hemoglobin, blood gas with electrolytes, and lactate can be used also in the prehospital setting for optimizing and individualizing trauma resuscitation. Point-of-care coagulation testing with activated prothrombin test, prothrombin test, and activated coagulation/clotting time tests is available for prehospital use. Although robust, battery driven, and easy to handle, many devices lack documentation for use in prehospital care. Some of the devices correspond poorly to corresponding laboratory analyses in acute trauma coagulopathy and at lower hematocrits. In trauma, viscoelastic tests such as rotational thromboelastometry and thromboelastography can rapidly detect acute trauma coagulopathy and give an overall dynamic picture of the hemostatic system and the interaction between its different components: coagulation activation, fibrin polymerization, fibrin platelet interactions within the clot, and fibrinolysis. Rotational thromboelastometry is shock resistant and has the potential to be used outside the hospital setting to guide individualized coagulation factor and blood component therapies. Sonoclot and Rheorox are two small viscoelastic instruments with one-channel options, but with less documentation. The point-of-care market for coagulation tests is quickly expanding, and new devices are introduced all the time. Still they should be better adopted to prehospital conditions, small, robust, battery charged, and rapid and use small sample volumes and whole blood.
Collapse
|
10
|
Kotanen CN, Wilson AN, Dong C, Dinu CZ, Justin GA, Guiseppi-Elie A. The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells. Biomaterials 2013; 34:6318-27. [DOI: 10.1016/j.biomaterials.2013.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/12/2013] [Indexed: 11/28/2022]
|