1
|
Feng F, Li Q, Sun X, Yao L, Wang X. Tumor Microenvironment-Responsive Magnetotactic Bacteria-Based Multi-Drug Delivery Platform for MRI-Visualized Tumor Photothermal Chemodynamic Therapy. BIOLOGY 2024; 13:658. [PMID: 39336086 PMCID: PMC11428741 DOI: 10.3390/biology13090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Cancer cells display elevated reactive oxygen species (ROS) and altered redox status. Herein, based on these characteristics, we present a multi-drug delivery platform, AMB@PDAP-Fe (APPF), from the magnetotactic bacterium AMB-1 and realize MRI-visualized tumor-microenvironment-responsive photothermal-chemodynamic therapy. The Fe3+ in PDAP-Fe is reduced by the GSH at the tumor site and is released in the form of highly active Fe2+, which catalyzes the generation of ROS through the Fenton reaction and inhibits tumor growth. At the same time, the significant absorption of the mineralized magnetosomes in AMB-1 cells in the NIR region enables them to efficiently convert near-infrared light into heat energy for photothermal therapy (PTT), to which PDAP also contributes. The heat generated in the PTT process accelerates the process of Fe2+ release, thereby achieving an enhanced Fenton reaction in the tumor microenvironment. In addition, the magnetosomes in AMB-1 are used as an MRI contrast agent, and the curing process is visualized. This tumor microenvironment-responsive MTB-based multi-drug delivery platform displays the potency to combat tumors and demonstrates the utility and practicality of understanding the cooperative molecular mechanism when designing multi-drug combination therapies.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qilong Li
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefei Sun
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Li Yao
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyu Wang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
García-Álvarez R, Vallet-Regí M. Bacteria and cells as alternative nano-carriers for biomedical applications. Expert Opin Drug Deliv 2022; 19:103-118. [PMID: 35076351 PMCID: PMC8802895 DOI: 10.1080/17425247.2022.2029844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Nano-based systems have received a lot of attention owing to their particular properties and, hence, have been proposed for a wide variety of biomedical applications. These nanosystems could be potentially employed for diagnosis and therapy of different medical issues. Although these nanomaterials are designed for specific tasks, interactions, and transformations when administered to the human body affect their performance and behavior. In this regard, bacteria and other cells have been presented as alternative nanocarriers. These microorganisms can be genetically modified and customized for a more specific therapeutic action and, in combination with nanomaterials, can lead to bio-hybrids with a unique potential for biomedical purposes. AREAS COVERED Literature regarding bacteria and cells employed in combination with nanomaterials for biomedical applications is revised and discussed in this review. The potential as well as the limitations of these novel bio-hybrid systems are evaluated. Several examples are presented to show the performance of these alternative nanocarriers. EXPERT OPINION Bio-hybrid systems have shown their potential as alternative nanocarriers as they contribute to better performance than traditional nano-based systems. Nevertheless, their limitations must be studied, and advantages and drawbacks assessed before their application to medicine.
Collapse
Affiliation(s)
- Rafaela García-Álvarez
- Departamento de Química En Ciencias Farmacéuticas, Unidad de Química Inorgánica Y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre I+12, Madrid, Spain
- Ciber de Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química En Ciencias Farmacéuticas, Unidad de Química Inorgánica Y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre I+12, Madrid, Spain
- Ciber de Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| |
Collapse
|
3
|
Xie S, Zhang P, Zhang Z, Liu Y, Chen M, Li S, Li X. Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomater 2021; 131:172-184. [PMID: 34171461 DOI: 10.1016/j.actbio.2021.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapy is confronted with challenges regarding the effective delivery of chemotherapeutics into tumor cells after systemic administration. Herein, we propose a strategy to load drugs into probiotic E. coli Nissle 1917 (EcN) for self-guided navigation to tumor tissues and subsequently release the drugs with in situ transformation into bacterial ghosts (BGs). Chemotherapeutic agent 5-fluorouracil (FU) and macrophage phenotype regulator zoledronic acid (ZOL) are loaded into EcN through electroporation, followed by decoration of Au nanorods on the ECN surface to construct EcNZ/F@Au. High loading levels of 5FU (8.8%) and ZOL (10.5%) are achieved as well as high retention rates of bacterial viability (87%) and motion velocity (88%). Under near infrared (NIR) illumination the photothermal effect of Au nanorods elevates the local temperature to induce the transformation of live EcN into BGs. The created transmembrane channels initiate the gradual drug release from BGs, thus representing the first attempt to control the drug release via a biological evolution. An intermittent NIR illumination causes stepwise increases in the BG formation and drug release, which could implement an external on-off control and spatiotemporal drug release. Self-guided motion of EcN promotes efficient extravasation across blood vessels and preferential accumulation of drugs in tumors. In addition to the chemotherapeutic effect of FU, the local release of ZOL from EcNZ/F@Au enhances valid polarization of tumor-associated macrophages toward the M1 phenotype and an effective production of proinflammatory cytokines, leading to a synergistic efficacy on tumor growth inhibition. Thus, this study demonstrates a feasible strategy to integrate chemotherapy, immunotherapy, and photothermal effects in a concise manner for effective cancer treatment with few side effects. STATEMENT OF SIGNIFICANCE: Bacteria are capable to trace and colonize in hypoxic tumor tissues. Bacterial drug carriers indicate limitations in efficient drug loading and effective release modulation. Herein, we propose a strategy to load drugs into bacteria for self-guided delivery and subsequently release the drugs in tumors with in situ transformation into bacterial ghost (BGs). Drugs are loaded into live bacteria through electroporation and Au nanorods are decorated on the bacterial surface, wherein the photothermal effect, chemotherapy, and immunotherapy are integrated in a concise manner. NIR illmumination of Au nanorods elevates the local temparature, induces the BG tranformation, and activates the spatiotemporal drug release, representing the first attempt of release modulation via a biological evolution.
Collapse
|
4
|
Abstract
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.
Collapse
|
5
|
Choi J, Hwang J, Kim J, Choi H. Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Adv Healthc Mater 2021; 10:e2001596. [PMID: 33331143 DOI: 10.1002/adhm.202001596] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic agents, such as drugs and cells, play an essential role in virtually every treatment of injury, illness, or disease. However, the conventional practices of drug delivery often result in undesirable side effects caused by drug overdose and off-target delivery. In the case of cell delivery, the survival rate of the transplanted cells is extremely low and difficulties with the administration route of cells remain a problem. Recently, magnetically actuated microrobots have started offering unique opportunities in targeted therapeutic delivery due to their tiny size and ability to access hard-to-reach lesions in a minimally invasive manner; considerable advances in this regard have been made over the past decade. Here, recent progress in magnetically actuated microrobots, developed for targeted drug/cell delivery, is presented, with a focus on their design features and mechanisms for controlled therapeutic release. Additionally, the practical challenges faced by the microrobots, and future research directions toward the swift bench-to-bedside translation of the microrobots are addressed.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Junsun Hwang
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| |
Collapse
|
6
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
7
|
Bilateral control simulations for a pair of magnetically-coupled robotic arm and bacterium for in vivo applications. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Gurung JP, Gel M, Baker MAB. Microfluidic techniques for separation of bacterial cells via taxis. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:66-79. [PMID: 32161767 PMCID: PMC7052948 DOI: 10.15698/mic2020.03.710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
The microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes. These include establishing concentration and temperature gradients to influence motility via chemotaxis and thermotaxis, or controlling the surrounding microenvironment to influence rheotaxis, magnetotaxis, and phototaxis. Improvements in microfluidic technology have allowed fine separation of cells based on subtle differences in motility traits and have applications in synthetic biology, directed evolution, and applied medical microbiology.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney
| | - Murat Gel
- CSIRO Manufacturing, Clayton
- CSIRO Future Science Platform for Synthetic Biology
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney
- CSIRO Future Science Platform for Synthetic Biology
| |
Collapse
|
9
|
Recent trends and advances in microbe-based drug delivery systems. ACTA ACUST UNITED AC 2019; 27:799-809. [PMID: 31376116 DOI: 10.1007/s40199-019-00291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Since more than a decade, pharmaceutical researchers endeavor to develop an effective, safe and target-specific drug delivery system to potentiate the therapeutic actions and reduce the side effects. The conventional drug delivery systems (DDSs) show the improvement in the lifestyle of the patients suffering from non-communicable diseases, autoimmune diseases but sometimes, drug resistance developed during the treatment is a major concern for clinicians to find an alternative and more advanced transport systems. Advancements in drug delivery facilitate the development of active carrier for targeted action with improved pharmacokinetic behavior. This review article focuses on microbe-based drug delivery systems to provide safe, non-toxic, site-specific targeted action with lesser side effects. Pharmaceutical researchers play a vital part in microbe-based drug delivery systems as a therapeutic agent and carrier. The properties of microorganisms like self-propulsion, in-situ production of therapeutics, penetration into the tumor cells, increase in immunity, etc. are of interest for development of highly effective delivery carrier. Lactococcus lactis is therapeutically helpful in Inflammatory Bowel Disease (IBD) and is under investigation of phase I clinical trial. Moreover, bacteria, anti-cancer oncolytic viruses, viral vectors (gene therapy) and viral immunotherapy are the attractive areas of biotechnological research. Virus acts as a distinctive candidate for imaging of tumor and accumulation of active in tumor. Graphical abstract Classification of microbe-based drug delivery system.
Collapse
|
10
|
Wang B, Zhang Y, Zhang L. Recent progress on micro- and nano-robots: towards in vivo tracking and localization. Quant Imaging Med Surg 2018; 8:461-479. [PMID: 30050781 PMCID: PMC6037952 DOI: 10.21037/qims.2018.06.07] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yabin Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Hydrodynamic Impedance of Bacteria and Bacteria-Inspired Micro-Swimmers: A New Strategy to Predict Power Consumption of Swimming Micro-Robots for Real-Time Applications. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201700013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
An Accurate Perception Method for Low Contrast Bright Field Microscopy in Heterogeneous Microenvironments. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Stanton MM, Park BW, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms. ACS NANO 2017; 11:9968-9978. [PMID: 28933815 DOI: 10.1021/acsnano.7b04128] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods includes the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles to the biofilm results in only moderate efficacy. We demonstrate here that the nonpathogenic magnetotactic bacteria Magnetosopirrillum gryphiswalense (MSR-1) can be integrated with drug-loaded mesoporous silica microtubes to build controllable microswimmers (biohybrids) capable of antibiotic delivery to target an infectious biofilm. Applying external magnetic guidance capability and swimming power of the MSR-1 cells, the biohybrids are directed to and forcefully pushed into matured Escherichia coli (E. coli) biofilms. Release of the antibiotic, ciprofloxacin, is triggered by the acidic microenvironment of the biofilm, ensuring an efficient drug delivery system. The results reveal the capabilities of a nonpathogenic bacteria species to target and dismantle harmful biofilms, indicating biohybrid systems have great potential for antibiofilm applications.
Collapse
Affiliation(s)
- Morgan M Stanton
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
| | - Diana Vilela
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
- Smart Nano-Bio-Devices, Institute for Bioengineering of Catalonia (IBEC) , Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Klaas Bente
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Science Park Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
| | - Samuel Sánchez
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems , Heisenbergstraße 3, 70569 Stuttgart, Germany
- Institució Catalana de Recerca i EstudisAvancats (ICREA) , Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Smart Nano-Bio-Devices, Institute for Bioengineering of Catalonia (IBEC) , Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim Biophys Acta Gen Subj 2017; 1861:1530-1544. [PMID: 28130158 DOI: 10.1016/j.bbagen.2017.01.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. SCOPE OF REVIEW The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. MAJOR CONCLUSIONS Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. GENERAL SIGNIFICANCE The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality.
Collapse
|
15
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
16
|
Jacob JJ, Suthindhiran K. Magnetotactic bacteria and magnetosomes - Scope and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:919-928. [PMID: 27524094 DOI: 10.1016/j.msec.2016.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science.
Collapse
Affiliation(s)
- Jobin John Jacob
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
17
|
Microbial Cells with a Fe3
O4
Doped Hydrogel Extracellular Matrix: Manipulation of Living Cells by Magnetic Stimulus. Macromol Biosci 2016; 16:1506-1514. [DOI: 10.1002/mabi.201600143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/20/2016] [Indexed: 01/21/2023]
|
18
|
Affiliation(s)
- Hong Wang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
19
|
Sharafi A, Olamaei N, Martel S. MRI-based communication for untethered intelligent medical microrobots. JOURNAL OF MICRO-BIO ROBOTICS 2015. [DOI: 10.1007/s12213-015-0081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3831-51. [PMID: 24895215 DOI: 10.1002/smll.201400384] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Indexed: 05/25/2023]
Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
21
|
Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M. Magnetic steering control of multi-cellular bio-hybrid microswimmers. LAB ON A CHIP 2014; 14:3850-3859. [PMID: 25120224 DOI: 10.1039/c4lc00707g] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|