1
|
Liu W, Li H, Gao Q, Zhao D, Yu Y, Xiang Q, Cheng X, Wang ZL, Long W, Cheng T. Micro-Droplets Parameters Monitoring in a Microfluidic Chip via Liquid-Solid Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307184. [PMID: 37717142 DOI: 10.1002/adma.202307184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The monitoring of micro-droplets parameters is significant to the development of droplet microfluidics. However, existing monitoring methods have drawbacks such as high cost, interference with droplet movement, and even the potential for cross-contamination. Herein, a micro-droplets monitoring method (MDMM) based on liquid-solid triboelectric nanogenerator (LS-TENG) is proposed, which can realize non-invasive and self-powered monitoring of micro-droplets in a microfluidic chip. The droplet frequency is monitored by voltage pulse frequency and a mathematical model is established to monitor the droplet length and velocity. Furthermore, this work constructs micro-droplets sensor (MDS) based on the MDMM to carry out the experiment. The coefficients of determination (R2 ) of the fitting curves of the micro-droplets frequency, length, and velocity monitoring are 0.998, 0.997, and 0.995, respectively. To prove the universal applicability of the MDMM, the micro-droplets generated by different liquid media and channel structures are monitored. Eventually, a micro-droplet monitoring system is built, which can realize the counting of micro-droplets and the monitoring of droplet frequency and length. This work provides a novel approach for monitoring micro-droplets parameters, which holds the potential to advance developments in the field of microfluidics.
Collapse
Affiliation(s)
- Wenkai Liu
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Hengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yang Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xiang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiaojun Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Wei Long
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tinghai Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Microtissue size and cell-cell communication modulate cell migration in arrayed 3D collagen gels. Biomed Microdevices 2018; 20:62. [DOI: 10.1007/s10544-018-0309-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Zeng YN, Kang YL, Rau LR, Hsu FY, Tsai SW. Construction of cell-containing, anisotropic, three-dimensional collagen fibril scaffolds using external vibration and their influence on smooth muscle cell phenotype modulation. ACTA ACUST UNITED AC 2017; 12:045019. [PMID: 28569670 DOI: 10.1088/1748-605x/aa766d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Numerous methods have been developed for preparing guiding channels/tracks to promote the alignment of highly oriented cell types. However, these manufacture methods cannot fabricate interconnected guiding channels within three-dimensional (3D) scaffolds. Providing a suitable architectural scaffold for cell attachment could lead cells to more rapidly display a desired phenotype and perform their unique functions. Previously, we developed a simple device composed of a pneumatic membrane that can generate a tunable vibration frequency to apply physical stimulation for fabricating a 3D aligned collagen fibril matrix with the characteristic D-period structure in one step. In the present study, we aimed to evaluate the cellular responses of thoracic aortic smooth muscle cells (A7r5) incorporated during the fabrication of 3D-aligned collagen fibrils with D-periods and compared these cells with those incorporated in a 3D, randomly distributed collagen matrix and in a two-dimensional (2D) aligned substrate after up to 10 days of culture. The results consistently demonstrated that A7r5 cells cultured within the 3D and 2D anisotropic matrices were aligned. Cells cultured in the 3D aligned scaffolds exhibited a higher proliferation rate as well as higher F-actin and smoothelin expression levels compared with cells cultured in 3D randomly distributed scaffolds. Together, these results indicate that a 3D-reconstituted, anisotropic collagen matrix fabricated by our process provides synergistic effects of tension stimulation and matrix stiffness on encapsulated cells and can direct A7r5 cells to transform from a synthetic phenotype into a contractile state.
Collapse
Affiliation(s)
- Yao-Nan Zeng
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Yoshida S, Takinoue M, Onoe H. Compartmentalized Spherical Collagen Microparticles for Anisotropic Cell Culture Microenvironments. Adv Healthc Mater 2017; 6. [PMID: 28322015 DOI: 10.1002/adhm.201601463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/06/2017] [Indexed: 12/21/2022]
Abstract
This paper describes a new fabrication method for obtaining anisotropic spherical hydrogel microparticles with different types of extracellular matrix (ECM) hemispheres for use in 3D cell culture. To fabricate the microparticles, a mixture of an ECM precursor solution and sodium alginate is ejected into a calcium chloride solution under large centrifugal acceleration by a centrifuge-based microfluidic device; the calcium alginate hydrogel plays a significant role as a "sacrificial gelation template" to maintain the ECM molecules in each hemisphere. This fabrication method enables gaining control of the hemispherical volume, density, and type of ECM. Using the microparticles, cells could be successfully encapsulated in each hemisphere selectively with high viability, which are then suitable for culture in the microparticles to form microtissues. It is believed that the proposed anisotropic ECM microparticles will facilitate the coculture of multiple cell types in different ECMs, which is similar to in vivo microenvironments, facilitating control of cell behavior in an anisotropic microenvironment for the benefit of large-scale and quantitative analyses in vitro.
Collapse
Affiliation(s)
- Satoru Yoshida
- Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-5822 Japan
| | - Masahiro Takinoue
- Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan
| | - Hiroaki Onoe
- Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-5822 Japan
| |
Collapse
|
6
|
Armada-Moreira A, Taipaleenmäki E, Itel F, Zhang Y, Städler B. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. NANOSCALE 2016; 8:19510-19522. [PMID: 27858045 DOI: 10.1039/c6nr07807a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry. This minireview aims at outlining the developments in D-μF from the past four years focusing on the assembly of nanoparticles, Janus-shaped and other non-spherical particles as well as their loading with biological payloads.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark. and Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
7
|
Morimoto Y, Hsiao AY, Takeuchi S. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Adv Drug Deliv Rev 2015; 95:29-39. [PMID: 26387835 DOI: 10.1016/j.addr.2015.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Microsized cellular constructs such as cellular aggregates and cell-laden hydrogel blocks are attractive cellular building blocks to reconstruct 3D macroscopic tissues with spatially ordered cells in bottom-up tissue engineering. In this regard, microfluidic techniques are remarkable methods to form microsized cellular constructs with high production rate and control of their shapes such as point, line, and plane. The fundamental shapes of the cellular constructs allow for the fabrication of larger arbitrary-shaped tissues by assembling them. This review introduces microfluidic formation methods of microsized cellular constructs and manipulation techniques to assemble them with control of their arrangements. Additionally, we show applications of the cellular constructs to biological studies and clinical treatments and discuss future trends as their potential applications.
Collapse
|
8
|
Draghi L, Brunelli D, Farè S, Tanzi MC. Programmed cell delivery from biodegradable microcapsules for tissue repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1002-12. [PMID: 26230911 DOI: 10.1080/09205063.2015.1070706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Injectable and resorbable hydrogels are an extremely attractive class of biomaterials. They make it possible to fill tissue defects accurately with an undoubtedly minimally invasive approach and to locally deliver cells that support repair or regeneration processes. However, their use as a cell carrier is often hindered by inadequate diffusion in bulk. A possible strategy for overcoming this transport limitation might be represented by injection of rapidly degradable cell-loaded microcapsules, so that maximum material thickness is limited by sphere radius. Here, the possibility of achieving programmable release of viable cells from alginate-based microcapsules was explored in vitro, by evaluating variations in material stability resulting from changes in hydrogel composition and assessing cell viability after encapsulation and in vitro release from microcapsules. Degradation of pure alginate microspheres was varied from a few days to several weeks by varying sodium alginate and calcium chloride concentrations. The addition of poloxamer was also found to accelerate degradation significantly, with capsule breakdown almost complete by two weeks, while chitosan was confirmed to strengthen alginate cross-linking. The presence of viable cells inside microspheres was revealed after encapsulation, and released cells were observed for all the formulations tested after a time interval dependent on bead degradation speed. These findings suggest that it may be possible to fine tune capsule breakdown by means of simple changes in material formulation and regulate, and eventually optimize, cell release for tissue repair.
Collapse
Affiliation(s)
- L Draghi
- a Chemistry, Materials and Chemical Engineering Department "G. Natta" , Politecnico di Milano , Piazza Leonardo da Vinci, 32 - 20133, Milano , Italy
| | | | | | | |
Collapse
|
9
|
Chiu TK, Lei KF, Hsieh CH, Hsiao HB, Wang HM, Wu MH. Development of a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs) through their lactic acid metabolism. SENSORS 2015; 15:6789-806. [PMID: 25808775 PMCID: PMC4435186 DOI: 10.3390/s150306789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 12/18/2022]
Abstract
This study reports a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs), a rare cell species in blood circulation. Based on the metabolic features of cancer cells, live CTCs can be quantified indirectly through their lactic acid production. Compared with the conventional schemes for CTC detection, this label-free approach could prevent the biological bias due to the heterogeneity of the surface antigens on cancer cells. In this study, a microfluidic device was proposed to generate uniform water-in-oil cell-encapsulating micro-droplets, followed by the fluorescence-based optical detection of lactic acid produced within the micro-droplets. To test its feasibility to quantify cancer cells, experiments were carried out. Results showed that the detection signals were proportional to the number of cancer cells within the micro-droplets, whereas such signals were insensitive to the existence and number of leukocytes within. To further demonstrate its feasibility for cancer cell detection, the cancer cells with known cell number in a cell suspension was detected based on the method. Results revealed that there was no significant difference between the detected number and the real number of cancer cells. As a whole, the proposed method opens up a new route to detect live CTCs in a label-free manner.
Collapse
Affiliation(s)
- Tzu-Keng Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kin-Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chia-Hsun Hsieh
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkuo, Taoyuan 33302, Taiwan.
| | - Hung-Bo Hsiao
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|