1
|
Li X, Wang H, Dong X, Shi Q, Sun T, Shimoda S, Huang Q, Fukuda T. Accurate modulation of photoprinting under stiffness imaging feedback for engineering ECMs with high-fidelity mechanical properties. MICROSYSTEMS & NANOENGINEERING 2022; 8:60. [PMID: 35669968 PMCID: PMC9163149 DOI: 10.1038/s41378-022-00394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Engineered extracellular matrices (ECMs) that replicate complex in-vivo features have shown great potential in tissue engineering. Biocompatible hydrogel microstructures have been widely used to replace these native ECMs for physiologically relevant research. However, accurate reproduction of the 3D hierarchical and nonuniform mechanical stiffness inside one integrated microstructure to mimic the complex mechanical properties of native ECMs presents a major challenge. Here, by using digital holographic microscopy (DHM)-based stiffness imaging feedback, we propose a novel closed-loop control algorithm to achieve high-accuracy control of mechanical properties for hydrogel microstructures that recapitulate the physiological properties of native ECMs with high fidelity. During photoprinting, the photocuring area of the hydrogel is divided into microscale grid areas to locally control the photocuring process. With the assistance of a motorized microfluidic channel, the curing thickness is controlled with layer-by-layer stacking. The DHM-based stiffness imaging feedback allows accurate adjustment of the photocuring degree in every grid area to change the crosslinking network density of the hydrogel, thus enabling large-span and high-resolution modulation of mechanical properties. Finally, the gelatin methacrylate was used as a typical biomaterial to construct the high-fidelity biomimetic ECMs. The Young's modulus could be flexibly modulated in the 10 kPa to 50 kPa range. Additionally, the modulus gradient was accurately controlled to within 2.9 kPa. By engineering ECM with locally different mechanical properties, cell spreading along the stiff areas was observed successfully. We believe that this method can regenerate complex biomimetic ECMs that closely recapitulate in-vivo mechanical properties for further applications in tissue engineering and biomedical research.
Collapse
Affiliation(s)
- Xin Li
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Huaping Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Qing Shi
- The Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, 100081 China
| | - Tao Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081 China
| | - Shingo Shimoda
- Intelligent Behavior Control Collaboration Unit, RIKEN Center of Brain Science, 463-0003 Nagoya, Japan
| | - Qiang Huang
- The Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, 100081 China
| | - Toshio Fukuda
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
2
|
Chemically-Gated and Sustained Molecular Transport through Nanoporous Gold Thin Films in Biofouling Conditions. NANOMATERIALS 2021; 11:nano11020498. [PMID: 33669404 PMCID: PMC7920421 DOI: 10.3390/nano11020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Sustained release and replenishment of the drug depot are essential for the long-term functionality of implantable drug-delivery devices. This study demonstrates the use nanoporous gold (np-Au) thin films for in-plane transport of fluorescein (a small-molecule drug surrogate) over large (mm-scale) distances from a distal reservoir to the site of delivery, thereby establishing a constant flux of molecular release. In the absence of halides, the fluorescein transport is negligible due to a strong non-specific interaction of fluorescein with the pore walls. However, in the presence of physiologically relevant concentration of ions, halides preferentially adsorb onto the gold surface, minimizing the fluorescein–gold interactions and thus enabling in-plane fluorescein transport. In addition, the nanoporous film serves as an intrinsic size-exclusion matrix and allows for sustained release in biofouling conditions (dilute serum). The molecular release is reproducibly controlled by gating it in response to the presence of halides at the reservoir (source) and the release site (sink) without external triggers (e.g., electrical and mechanical).
Collapse
|
3
|
Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol 2020; 8:827. [PMID: 32850709 PMCID: PMC7405504 DOI: 10.3389/fbioe.2020.00827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.
Collapse
Affiliation(s)
| | - Natalia Antonela Scilletta
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
| | | | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paolo Nicolas Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
5
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Song P, Kuang S, Panwar N, Yang G, Tng DJH, Tjin SC, Ng WJ, Majid MBA, Zhu G, Yong KT, Wang ZL. A Self-Powered Implantable Drug-Delivery System Using Biokinetic Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605668. [PMID: 28067957 DOI: 10.1002/adma.201605668] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/13/2016] [Indexed: 05/21/2023]
Abstract
The first triboelectric-nanogenerator (TENG)-based self-powered implantable drug-delivery system is presented. Pumping flow rates from 5.3 to 40 µL min-1 under different rotating speeds of the TENG are realized. The implantable drug-delivery system can be powered with a TENG device rotated by human hand motion. Ex vivo trans-sclera drug delivery in porcine eyes is demonstrated by utilizing the biokinetic energies of human hands.
Collapse
Affiliation(s)
- Peiyi Song
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore, 637141, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuangyang Kuang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guang Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Swee Chuan Tjin
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore, 637141, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wun Jern Ng
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore, 637141, Singapore
| | - Maszenan Bin Abdul Majid
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore, 637141, Singapore
| | - Guang Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Ken-Tye Yong
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore, 637141, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
7
|
Scholten K, Meng E. Materials for microfabricated implantable devices: a review. LAB ON A CHIP 2015; 15:4256-72. [PMID: 26400550 DOI: 10.1039/c5lc00809c] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The application of microfabrication to the development of biomedical implants has produced a new generation of miniaturized technology for assisting treatment and research. Microfabricated implantable devices (μID) are an increasingly important tool, and the development of new μIDs is a rapidly growing field that requires new microtechnologies able to safely and accurately function in vivo. Here, we present a review of μID research that examines the critical role of material choice in design and fabrication. Materials commonly used for μID production are identified and presented along with their relevant physical properties and a survey of the state-of-the-art in μID development. The consequence of material choice as it pertains to microfabrication and biocompatibility is discussed in detail with a particular focus on the divide between hard, rigid materials and soft, pliable polymers.
Collapse
Affiliation(s)
- Kee Scholten
- Department of Biomedical Engineering, Univ. of Southern California, Los Angeles, CA 90089-1111, USA.
| | - Ellis Meng
- Department of Biomedical Engineering, Univ. of Southern California, Los Angeles, CA 90089-1111, USA.
| |
Collapse
|