1
|
Ji HB, Kim SN, Lee SH, Huh BK, Shin BH, Lee C, Cho YC, Heo CY, Choy YB. Soft implantable device with drug-diffusion channels for the controlled release of diclofenac. J Control Release 2019; 318:176-184. [PMID: 31838204 DOI: 10.1016/j.jconrel.2019.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
We propose the use of an implantable device with multiple embedded drug diffusion channels, each of which is connected to a drug reservoir, for the controlled release of diclofenac. To minimize the size of the incision needed during device implantation, the device used herein was made of the soft biocompatible material polydimethylsiloxane (PDMS), thereby allowing for folding during device implantation. We aimed to achieve a profile of diclofenac release that was reproducible even after folding, and thus the channel was filled with cross-linked gelatin, which could be swollen via the infiltration of a bodily fluid to compensate for any possible defects formed during folding. We first assessed the use of individual channels of varying lengths of 1-12 mm, and the onset time and average rate varied from 1 to 14 days and from 0.31-4.3%/day, respectively. According to these results, we prepared a device with multiple integrated pairs of drug reservoirs and channels of different lengths (i.e., the SDD_I), in which the channel combination was selected to achieve the long-term, zero-order release of the largest amount of drug. Thus, the SDD_I used herein exhibited almost zero-order drug release for 55 days at a release rate of 1.19%/day (179.8 μg/day), which did not vary even after the device was folded multiple times due to the presence of gelatin in the channel. When tested in living rats, the SDD_I device could be folded and inserted subcutaneously through an incision less than half the size of that needed for the implantation of the unfolded, intact SDD_I. For both the unfolded and folded SDD_I devices, the drug concentration in blood was observed to be maintained within a similar range due to the almost zero-order, reproducible release of diclofenac.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Ho Shin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Yeong Heo
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University, Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Coker RA, Zellmer ER, Moran DW. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording. J Neural Eng 2018; 16:026001. [PMID: 30524005 DOI: 10.1088/1741-2552/aaefcf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Advancement in prosthetic limb technology requires corresponding improvements in the capability of the amputee to naturally control the device via original motor pathways while simultaneously receiving haptic feedback via sensory pathways. Recording efferent axonal activity using a peripheral neural interface (PNI) allows a good tradeoff between invasiveness and selectivity while possibly preserving the phenomenology of controlling the original limb. One such PNI, the thin-film transverse intrafascicular multichannel electrode (tfTIME), has been shown to be successful in controlling powered prosthetics. However, the tfTIME is highly susceptible to stimulation artifact; thus, using such a PNI to both record efferent motor signals while concurrently stimulating afferent sensory axons in the same nerve is problematic. The micro-channel sieve electrode could also provide a stable, selective, neural interface with larger signal-to-noise levels that are less susceptible to concurrent stimulation artifact or other external noise effects. APPROACH This study uses a computational model to compare recording levels of simulated ENGs across neural drive levels as well as basic control signals derived from the ENGs in both tfTIME and micro-channel sieve PNIs. A motor neuron pool model generated axon firing rates at a given neural drive. The time course of the corresponding extracellular currents of the myelinated motor axons were determined using core conductor axon models. Finite element models determined the contribution of the extracellular current from nodes of Ranvier on potentials recorded using each interface. Contributions from each node were combined to create the final ENG. MAIN RESULTS ENGs recorded using the micro-channel sieves were shown to have much higher amplitudes compared to ENGs recorded using the tfTIMEs. Signal amplitudes also varied less as a function of axonal placement and spike timing, resulting in more consistent signals with amplitudes determined predominantly by neural drive. SIGNIFICANCE Simulation results suggest that the micro-channel sieve provides higher quality control signals over tfTIME PNIs in decoding ENGs. Coupling these results with concurrent stimulation results of the companion paper (Part B: stimulation) suggests that the micro-channel sieve is an optimal bidirectional PNI.
Collapse
Affiliation(s)
- Robert A Coker
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | | | | |
Collapse
|
3
|
Lee B, Koripalli MK, Jia Y, Acosta J, Sendi MSE, Choi Y, Ghovanloo M. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Sci Rep 2018; 8:6115. [PMID: 29666407 PMCID: PMC5904113 DOI: 10.1038/s41598-018-24465-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
A new study with rat sciatic nerve model for peripheral nerve interfacing is presented using a fully-implanted inductively-powered recording and stimulation system in a wirelessly-powered standard homecage that allows animal subjects move freely within the homecage. The Wireless Implantable Neural Recording and Stimulation (WINeRS) system offers 32-channel peripheral nerve recording and 4-channel current-controlled stimulation capabilities in a 3 × 1.5 × 0.5 cm3 package. A bi-directional data link is established by on-off keying pulse-position modulation (OOK-PPM) in near field for narrow-band downlink and 433 MHz OOK for wideband uplink. An external wideband receiver is designed by adopting a commercial software defined radio (SDR) for a robust wideband data acquisition on a PC. The WINeRS-8 prototypes in two forms of battery-powered headstage and wirelessly-powered implant are validated in vivo, and compared with a commercial system. In the animal study, evoked compound action potentials were recorded to verify the stimulation and recording capabilities of the WINeRS-8 system with 32-ch penetrating and 4-ch cuff electrodes on the sciatic nerve of awake freely-behaving rats. Compared to the conventional battery-powered system, WINeRS can be used in closed-loop recording and stimulation experiments over extended periods without adding the burden of carrying batteries on the animal subject or interrupting the experiment.
Collapse
Affiliation(s)
- Byunghun Lee
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.,Incheon National University, Department of Electrical Engineering, Incheon, 22012, South Korea
| | - Mukhesh K Koripalli
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Yaoyao Jia
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Joshua Acosta
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - M S E Sendi
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA
| | - Yoonsu Choi
- University of Texas, Rio Grande Valley, Department of Electrical Engineering, Edinburg, 78539, USA
| | - Maysam Ghovanloo
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, 30308, USA.
| |
Collapse
|
4
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
5
|
Gurlin RE, Keating MT, Li S, Lakey JR, de Feraudy S, Shergill BS, Botvinick EL. Vascularization and innervation of slits within polydimethylsiloxane sheets in the subcutaneous space of athymic nude mice. J Tissue Eng 2017; 8:2041731417691645. [PMID: 28228933 PMCID: PMC5308423 DOI: 10.1177/2041731417691645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Success of cell therapy in avascular sites will depend on providing sufficient blood supply to transplanted tissues. A popular strategy of providing blood supply is to embed cells within a functionalized hydrogel implanted within the host to stimulate neovascularization. However, hydrogel systems are not always amenable for removal post-transplantation; thus, it may be advantageous to implant a device that contains cells while also providing access to the circulation so retrieval is possible. Here we investigate one instance of providing access to a vessel network, a thin sheet with through-cut slits, and determine if it can be vascularized from autologous materials. We compared the effect of slit width on vascularization of a thin sheet following subcutaneous implantation into an animal model. Polydimethylsiloxane sheets with varying slit widths (approximately 150, 300, 500, or 1500 µm) were fabricated from three-dimensional printed molds. Subcutaneous implantation of sheets in immunodeficient mice revealed that smaller slit widths have evidence of angiogenesis and new tissue growth, while larger slit widths contain native mature tissue squeezing into the space. Our results show that engineered slit sheets may provide a simple approach to cell transplantation by providing a prevascularized and innervated environment.
Collapse
Affiliation(s)
- Rachel E Gurlin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Mark T Keating
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Shiri Li
- Department of Surgery, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Rt Lakey
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; Department of Surgery, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sébastien de Feraudy
- Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bhupinder S Shergill
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; Department of Surgery, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Choi Y, Noh H(M. Peripheral nerve regeneration monitoring using multilayer microchannel scaffolds. Neural Regen Res 2016; 11:422-3. [PMID: 27127479 PMCID: PMC4829005 DOI: 10.4103/1673-5374.179052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|