1
|
Mech-Dorosz A, Bajraktari N, Hélix-Nielsen C, Emnéus J, Heiskanen A. Stationary photocurrent generation from bacteriorhodopsin-loaded lipo-polymersomes in polyelectrolyte multilayer assembly on polyethersulfone membrane. Anal Bioanal Chem 2020; 412:6307-6318. [PMID: 32166446 DOI: 10.1007/s00216-020-02533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 11/24/2022]
Abstract
Vesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support. In our study, we deposited BR-loaded lipo-polymersomes in a cross-linked polyelectrolyte multilayer assembly either directly physisorbed on gold electrode microchips or cross-linked on an intermediary polyethersulfone (PES) membrane covalently grafted using a hydrogel cushion. In both cases, electrochemical impedance spectroscopic characterization demonstrated successful polyelectrolyte assembly with BR-loaded lipo-polymersomes. Light-induced proton pumping by BR-loaded lipo-polymersomes in the different support constructs was characterized by amperometric recording of the generated photocurrent. Application of the hydrogel/PES membrane support together with the polyelectrolyte assembly decreased the transient current response upon light activation of BR, while enhancing the generated stationary current to over 700 nA/cm2. On the other hand, the current response from BR-loaded lipo-polymersomes in a polyelectrolyte assembly without the hydrogel/PES membrane support was primarily a transient peak combined with a low-nanoampere-level stationary photocurrent. Hence, the obtained results demonstrated that by using a hydrogel/PES support it was feasible to monitor continuously light-induced proton flux in biomimetic applications of lipo-polymersomes. Graphical abstract.
Collapse
Affiliation(s)
- Agnieszka Mech-Dorosz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark
- Novo Nordisk A/S, Brennum Park 24 K, 3400, Hillerød, Denmark
| | - Niada Bajraktari
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
- Aquaporin A/S, Nymøllevej 78, 2800, Kgs. Lyngby, Denmark
| | - Claus Hélix-Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
- Aquaporin A/S, Nymøllevej 78, 2800, Kgs. Lyngby, Denmark
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Habel J, Hansen M, Kynde S, Larsen N, Midtgaard SR, Jensen GV, Bomholt J, Ogbonna A, Almdal K, Schulz A, Hélix-Nielsen C. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. MEMBRANES 2015; 5:307-51. [PMID: 26264033 PMCID: PMC4584284 DOI: 10.3390/membranes5030307] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.
Collapse
Affiliation(s)
- Joachim Habel
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Michael Hansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Søren Kynde
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Nanna Larsen
- University of Copenhagen, Niels Bohr Institute, Hans Christian Ørsted building D, Universitetsparken, 5, 2100 Copenhagen, Denmark.
| | - Søren Roi Midtgaard
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | | - Julie Bomholt
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Anayo Ogbonna
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Kristoffer Almdal
- Technical University of Denmark, Department of Micro- and Nanotechnology, Produktionstorvet, Building 423, 2800 Kgs. Lyngby.
| | - Alexander Schulz
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
- University of Maribor, Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|