1
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
2
|
Dester E, Alocilja E. Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review. BIOSENSORS 2022; 12:112. [PMID: 35200372 PMCID: PMC8869689 DOI: 10.3390/bios12020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 06/01/2023]
Abstract
Rapid and accurate food pathogen detection is an essential step to preventing foodborne illnesses. Before detection, removal of bacteria from the food matrix and concentration to detectable levels are often essential steps. Although many reviews discuss rapid concentration methods for foodborne pathogens, the use of glycan-coated magnetic nanoparticles (MNPs) is often omitted. This review seeks to analyze the potential of this technique as a rapid and cost-effective solution for concentration of bacteria directly from foods. The primary focus is the mechanism of glycan-coated MNP binding, as well as its current applications in concentration of foodborne pathogens. First, a background on the synthesis, properties, and applications of MNPs is provided. Second, synthesis of glycan-coated particles and their theorized mechanism for bacterial adhesion is described. Existing research into extraction of bacteria directly from food matrices is also analyzed. Finally, glycan-coated MNPs are compared to the magnetic separation technique of immunomagnetic separation (IMS) in terms of cost, time, and other factors. At its current state, glycan-coated MNPs require more research to fully identify the mechanism, potential for optimization, and extraction capabilities directly in food matrices. However, current research indicates glycan-coated MNPs are an incredibly cost-effective method for rapid food pathogen extraction and concentration.
Collapse
Affiliation(s)
- Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Su X, Ren R, Wu Y, Li S, Ge C, Liu L, Xu Y. Study of biochip integrated with microelectrodes modified by poly-dopamine-co-chitosan composite gel for separation, enrichment and detection of microbes in the aerosol. Biosens Bioelectron 2021; 176:112931. [PMID: 33385804 DOI: 10.1016/j.bios.2020.112931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
As the urgent need for rapid detection of airborne microbes in a specific environment, a biochip which was integrated with the functions of enrichment and detection was designed and developed. It was composed of cover plate, copper microelectrodes modified with poly-dopamine-co-chitosan (PDA-co-CS) composite gel, sealing washer and substrate containing copper sheet electrode. The microbes were enriched due to the good ventilation efficiency and adhesion of the PDA-co-CS composite gel. The enrichment efficiency of microbes was 99.9%. The electrical impedance spectrum (EIS) test system which was composed of the copper electrodes and the copper sheet electrode were used to detect the concentrated microbes and establish the quantitative detection method of single microbe (S. aureus ATCC 6538) and mixed microbes (S. aureus ATCC 6538, E. coli JM109, and Candida albicans). It was shown that the biochip could respond to the aerosol with 1.26 × 103 cfu/m3S. aureus ATCC 6538, which was 25 times as high as the detection limit of natural deposition method. Meanwhile, the Surface-enhanced Raman Spectrum (SERS) of different microbes were detected in-situ with the help of the silver sol. The SERS data of S. aureus, E. coli and Candida albicans had been analyzed to establish recognition model by the principal component analysis (PCA) method and the three microbes were successfully identified. It was demonstrated that the designed biochip could be applied for separation, enrichment and detection of microbes in the aerosol.
Collapse
Affiliation(s)
- Xi Su
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Rui Ren
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yin Wu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Shifang Li
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Chuang Ge
- Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China.
| | - Lulu Liu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China; School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
4
|
Han X, Liu Y, Yin J, Yue M, Mu Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res Int 2021; 143:110246. [PMID: 33992358 DOI: 10.1016/j.foodres.2021.110246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The global burden of foodborne diseases is substantial and foodborne pathogens are the major cause for human illnesses. In order to prevent the spread of foodborne pathogens, detection methods are constantly being updated towards rapid, portable, inexpensive, and multiplexed on-site detection. Due to the nature of the small size and low volume, microfluidics has been applied to rapid, time-saving, sensitive, and portable devices to meet the requirements of on-site detection. Simultaneous detection of multiple pathogens is another key parameter to ensure food safety. Multiplexed detection technology, including microfluidic chip design, offers a new opportunity to achieve this goal. In this review, we introduced several sample preparation and corresponding detection methods on microfluidic devices for multiplexed detection of foodborne pathogens. In the sample preparation section, methods of cell capture and enrichment, as well as nucleic acid sample preparation, were described in detail, and in the section of detection methods, amplification, immunoassay, surface plasmon resonance and impedance spectroscopy were exhaustively illustrated. The limitations and advantages of all available experimental options were also summarized and discussed in order to form a comprehensive understanding of cutting-edge technologies and provide a comparative assessment for future investigation and in-field application.
Collapse
Affiliation(s)
- Xiaoying Han
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanhui Liu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China.
| |
Collapse
|
5
|
Song Y, Han X, Li D, Liu Q, Li D. Simultaneous and continuous particle separation and counting via localized DC-dielectrophoresis in a microfluidic chip. RSC Adv 2021; 11:3827-3833. [PMID: 35424334 PMCID: PMC8694361 DOI: 10.1039/d0ra10296b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
A novel microfluidic method of counting the number of particles while they are separated by a localized DC-dielectrophoresis force was presented. Liquid flow from a wide microchannel forces the to-be-detected particles to pass over a small orifice on a side wall of the sample input channel. A direct current (DC) voltage applied across the small orifice and a strong electric field gradient is generated at the corners of the orifice for dielectrophoretic particle separation. Particle counting is achieved by detecting the electric current change caused by the being-separated particle near the sensing orifice. In this way, particles can be separate and in situ counted at the same time. Numerical simulations show that particle separation is achieved at the edge of the sensing orifice where the strength of the electric field gradient is the largest. Separation and counting of polystyrene particles of two and three different sizes with 1 μm resolution were demonstrated experimentally.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University Dalian 116026 China
| | - Xiaoshi Han
- Department of Marine Engineering, Dalian Maritime University Dalian 116026 China
| | - Deyu Li
- Department of Marine Engineering, Dalian Maritime University Dalian 116026 China
| | - Qinxin Liu
- The 601st Institute the 6th Academy, China Aerospace Science and Industry Corporation Limited Hohhot 010076 China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada
| |
Collapse
|
6
|
Smart needle to diagnose metastatic lymph node using electrical impedance spectroscopy. Auris Nasus Larynx 2020; 48:281-287. [PMID: 33288360 DOI: 10.1016/j.anl.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The cause of cervical lymphadenopathy varies from inflammation to malignancy. Accurate and prompt diagnosis is crucial as delayed detection of malignant lymph node can lead to a worse prognosis. To improve the diagnostic accuracy of metastatic lymph node, electrical spectroscopy was employed to study human normal and metastatic lymph nodes using a hypodermic needle with fine interdigitated electrodes on its tip (EoN). SUBJECTS AND METHODS The electrical impedance of samples collected from 8 patients were analyzed in the sweeping frequency range from 1 Hz to 1 MHz. To align the impedance level data of the patients, normalized impedance was employed. RESULTS The optimal frequency exhibiting the best discrimination results between the normal and cancerous tissues was introduced based on a discrimination index. A high sensitivity (86.2%) and specificity (88.9%) were obtained, which implied that the EoN holds the potential to improve the in vivo diagnostic accuracy of metastatic lymph node during biopsy and surgery. CONCLUSION EoN has a promising potential to be utilized in real-time in actual clinical trials without a need for any pre/post-treatment during FNA or surgery. We believe that the EoN could reduce unnecessary operations with its associated morbidity.
Collapse
|
7
|
Cui F, Jafarishad H, Zhou Z, Chen J, Shao J, Wen Q, Liu Y, Zhou HS. Batch fabrication of electrochemical sensors on a glycol-modified polyethylene terephthalate-based microfluidic device. Biosens Bioelectron 2020; 167:112521. [DOI: 10.1016/j.bios.2020.112521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023]
|
8
|
G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Mikrochim Acta 2020; 187:308. [PMID: 32356133 DOI: 10.1007/s00604-020-04291-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric method was developed using G-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5') as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524 nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102 CFU mL-1) and a linear response in the range 102 to 106 CFU mL-1. Graphical abstract The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.
Collapse
|
9
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
10
|
Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020; 211:120715. [PMID: 32070611 DOI: 10.1016/j.talanta.2020.120715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Rapid detection of foodborne pathogens is crucial to prevent the outbreaks of foodborne illnesses. In this study, a sensitive electrochemical aptasensor was developed using aptamer coated gold interdigitated microelectrode for target capture and impedance measurement, and antibody modified nickel nanowires (NiNWs) for target separation and impedance amplification. First, the interdigitated microelectrode was modified with the biotinylated aptamers against Salmonella typhimurium through electrostatic absorption of streptavidin onto the microelectrode and streptavidin-biotin binding. Then, the target Salmonella cells were magnetically separated and concentrated using the NiNWs modified with the anti-Salmonella typhimurium antibodies to form the bacteria-NiNW complexes, and incubated on the microelectrode to form the aptamer-bacteria-NiNW complexes. After an external arc magnetic field was developed and applied to control the NiNWs to form conductive NiNW bridges across the microelectrode, the enhanced impedance change of the microelectrode was measured and used to determine the amount of target bacteria. This electrochemical aptasensor was able to quantitatively detect Salmonella ranging from 102 to 106 CFU/mL in 2 h with the detection limit of 80 CFU/mL. The mean recovery for the spiked chicken samples was 103.2%.
Collapse
|
11
|
Viefhues M. Analytics in Microfluidic Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:191-209. [DOI: 10.1007/10_2020_131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Pang B, Zheng Y, Wang J, Liu Y, Song X, Li J, Yao S, Fu K, Xu K, Zhao C, Li J. Colorimetric detection of Staphylococcus aureus using gold nanorods labeled with yolk immunoglobulin and urease, magnetic beads, and a phenolphthalein impregnated test paper. Mikrochim Acta 2019; 186:611. [DOI: 10.1007/s00604-019-3722-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022]
|
13
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
14
|
Liu L, Xu Y, Cui F, Xia Y, Chen L, Mou X, Lv J. Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip. Biosens Bioelectron 2018; 112:86-92. [DOI: 10.1016/j.bios.2018.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|