1
|
Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue Han
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Tiange Wu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| |
Collapse
|
2
|
Wen X, Takahashi S, Hatakeyama K, Kamei KI. Evaluation of the Effects of Solvents Used in the Fabrication of Microfluidic Devices on Cell Cultures. MICROMACHINES 2021; 12:550. [PMID: 34066183 PMCID: PMC8151832 DOI: 10.3390/mi12050550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Microfluidic microphysiological systems (MPSs) or "organs-on-a-chip" are a promising alternative to animal models for drug screening and toxicology tests. However, most microfluidic devices employ polydimethylsiloxane (PDMS) as the structural material; and this has several drawbacks. Cyclo-olefin polymers (COPs) are more advantageous than PDMS and other thermoplastic materials because of their low drug absorption and autofluorescence. However, most COP-based microfluidic devices are fabricated by solvent bonding of the constituent parts. Notably, the remnant solvent can affect the cultured cells. This study employed a photobonding process with vacuum ultraviolet (VUV) light to fabricate microfluidic devices without using any solvent and compared their performance with that of solvent-bonded systems (using cyclohexane, dichloromethane, or toluene as the solvent) to investigate the effects of residual solvent on cell cultures. Quantitative immunofluorescence assays indicated that the coating efficiencies of extracellular matrix proteins (e.g., Matrigel and collagen I) were lower in solvent-bonded COP devices than those in VUV-bonded devices. Furthermore, the cytotoxicity of the systems was evaluated using SH-SY5Y neuroblastoma cells, and increased apoptosis was observed in the solvent-processed devices. These results provide insights into the effects of solvents used during the fabrication of microfluidic devices and can help prevent undesirable reactions and establish good manufacturing practices.
Collapse
Affiliation(s)
- Xiaopeng Wen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan;
| | - Seiichiro Takahashi
- Incubation Center Organs On Chip Project, Ushio INC, 1-6-5 Marunouchi, Chiyoda-ku, Tokyo 100-8150, Japan; (S.T.); (K.H.)
| | - Kenji Hatakeyama
- Incubation Center Organs On Chip Project, Ushio INC, 1-6-5 Marunouchi, Chiyoda-ku, Tokyo 100-8150, Japan; (S.T.); (K.H.)
| | - Ken-ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan;
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning 110016, China
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning 110016, China
| |
Collapse
|
3
|
Fabrication Protocol for Thermoplastic Microfluidic Devices: Nanoliter Volume Bioreactors for Cell Culturing. Methods Mol Biol 2021. [PMID: 33900574 DOI: 10.1007/7651_2021_397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microfluidic devices consist of microchannels etched or embossed into substrates made of polymer, glass or silicon. Intricate connections of the microchannels to reactors with some smart mechanical structures such as traps or curvatures fulfil the desired functionalities such as mixing, separation, flow control or setting the environment for biochemical reactions. Here, we describe the fabrication methods of a thermoplastic microbioreactor step by step. First, material selection is made, then, production methods are determined with the equipment that can be easily procured in a laboratory. COP with its outstanding characteristics among many polymers was chosen. Two types of microbioreactors, with and without electrodes, are designed with AutoCAD and L-edit softwares. Photolithography and electrochemical wet etching are used for master mold preparation. Thermal evaporator is employed for pure chromium and gold deposition on COP substrate and etchants are used to form the interdigitated electrodes. Once the master mold produced, hot embossing is used to obtain the designed shape on drilled and planarized COP. Cover COP, with or without electrodes, is bonded to the hot embossed COP via thermo-compression and thermoplastic microfluidic device is realized. Tubings are connected to the device and a bridge between the macro and micro world is established. Yeast or mammalian cells labeled or tagged with GFP/RFP on specific gene products are loaded into the microfluidic device, and real time data on cell dimensions and fluorescence intensity are collected using inverted fluorescence microscope, and finally image processing is used to analyze the acquired data.
Collapse
|
4
|
Yamanaka M, Wen X, Imamura S, Sakai R, Terada S, Kamei KI. Cyclo olefin polymer-based solvent-free mass-productive microphysiological systems. Biomed Mater 2021; 16. [PMID: 33588402 DOI: 10.1088/1748-605x/abe660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
A microphysiological system (MPS) holds great promise for drug screening and toxicological testing as an alternative to animal models. However, this platform faces several challenges in terms of the materials used (e.g., polydimethylsiloxane; PDMS). For instance, absorption of drug candidates and fluorescent dyes into PDMS, as well as the effect elicited by materials on cultured cells, can cause inaccurate or misleading results in cell assays. The use of PDMS also poses challenges for mass production and long-term storage of fabricated MPSs. Hence, to circumvent these issues, herein we describe the development of a cyclo olefin polymer (COP)-based MPS using photobonding processes and vacuum ultraviolet (VUV), designated as COP-VUV-MPS. COP is an amorphous polymer with chemical/physical stability, high purity and optical clarity. Due to the thermostability and high modulus of COP, the metal molding processes was applied for mass production of MPSs without deformation of microstructures and with quick fabrication cycle time (approx. 10 min/cycle). Moreover, VUV photobonding process with an excimer light at a 172-nm wavelength allowed assembling COP materials without the use of additional solvents and tapes, which might cause cell damages. In comparison with the conventional MPS made of PDMS (PDMS-MPS), COP-VUV-MPS showed improved chemical resistance without causing molecule absorption. Moreover, COP-VUV-MPS maintained the stemness of environmentally sensitive human-induced pluripotent stem cells without causing undesired cellular phenotypes or gene expression. These results suggest that COP-VUV-MPS may be broadly applicable for the advancement of MPS and applications in drug development, as well as in vitro toxicological testing.
Collapse
Affiliation(s)
- Makoto Yamanaka
- Ushio Inc, 1-6-5 Marunouchi, Chiyoda-ku, Chiyoda-ku, Tokyo, 100-8150, JAPAN
| | - Xiaopeng Wen
- Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, JAPAN
| | - Satoshi Imamura
- Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, JAPAN
| | - Risako Sakai
- Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, JAPAN
| | - Shiho Terada
- Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, JAPAN
| | - Ken-Ichiro Kamei
- Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, JAPAN
| |
Collapse
|
5
|
Gencturk E, Ulgen KO, Mutlu S. Thermoplastic microfluidic bioreactors with integrated electrodes to study tumor treating fields on yeast cells. BIOMICROFLUIDICS 2020; 14:034104. [PMID: 32477443 PMCID: PMC7237222 DOI: 10.1063/5.0008462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tumor-treating fields (TTFields) are alternating electrical fields of intermediate frequency and low intensity that can slow or inhibit tumor growth by disrupting mitosis division of cancerous cells through cell cycle proteins. In this work, for the first time, an in-house fabricated cyclo-olefin polymer made microfluidic bioreactors are integrated with Cr/Au interdigitated electrodes to test TTFields on yeast cells with fluorescent protein:Nop56 gene. A small gap between electrodes (50 μm) allows small voltages (<150 mV) to be applied on the cells; hence, uninsulated gold electrodes are used in the non-faradaic region without causing any electrochemical reaction at the electrode-medium interface. Electrochemical modeling as well as impedance characterization and analysis of the electrodes are done using four different cell nutrient media. The experiments with yeast cells are done with 150 mV, 150 kHz and 30 mV, 200 kHz sinusoidal signals to generate electrical field magnitudes of 6.58 V/cm and 1.33 V/cm, respectively. In the high electrical field experiment, the cells go through electroporation. In the experiment with the low electrical field magnitude for TTFields, the cells have prolonged mitosis from typical 80-90 min to 200-300 min. Our results confirm the validity of the electrochemical model and the importance of applying a correct magnitude of the electrical field. Compared to the so far reported alternatives with insulated electrodes, the here developed thermoplastic microfluidic bioreactors with uninsulated electrodes provide a new, versatile, and durable platform for in vitro cell studies toward the improvement of anti-cancer therapies including personalized treatment.
Collapse
Affiliation(s)
- Elif Gencturk
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- BUMEMS Laboratory, Department of Electrical and Electronics Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
6
|
Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability. Biomed Microdevices 2020; 22:20. [DOI: 10.1007/s10544-020-0474-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Odabasi IE, Gencturk E, Puza S, Mutlu S, Ulgen KO. A low cost PS based microfluidic platform to investigate cell cycle towards developing a therapeutic strategy for cancer. Biomed Microdevices 2018; 20:57. [DOI: 10.1007/s10544-018-0302-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Bagheri Z, Ehtesabi H, Hallaji Z, Aminoroaya N, Tavana H, Behroodi E, Rahimifard M, Abdollahi M, Latifi H. On-chip analysis of carbon dots effect on yeast replicative lifespan. Anal Chim Acta 2018; 1033:119-127. [PMID: 30172317 DOI: 10.1016/j.aca.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/13/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are promising nanomaterials for biosensing, bioimaging, and drug delivery due to their large surface area, excellent optical properties, and thermal and chemical stability. However, biosafety of CDs is still understudied, and there is not a generally accepted standard to evaluate the toxicity of CDs. We present a gradient network generator microfluidic device for dose-dependent testing of toxicity of CDs to a unicellular eukaryotic model organism, yeast Pichia pastoris. We fully characterized the microfluidic model and compare its performance with a conventional method. The gradient generator increased the contact area between the mixing species and enabled a high-throughput testing of CDs in a wide range of concentrations in cell chambers. Real time monitoring of yeast cell proliferation in the presence of CDs showed dose-dependent growth inhibition and various budding cell shape profiles. Comparing the result of microfluidic platform and conventional method revealed statistically significant differences in the proliferation rate of the cells between the two platforms. To understand the toxicity mechanism, we studied binding of CDs to P. pastoris and found increasing interactions of CDs with the cell surface at CDs larger concentrations. This study demonstrated the utility of the gradient generator microfluidic device as a convenient tool for toxicity assessment of nanomaterials at a cellular level.
Collapse
Affiliation(s)
- Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Velenjak, Tehran, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Velenjak, Tehran, Iran
| | - Zahra Hallaji
- Protein Research Center, Shahid Beheshti University G.C., Velenjak, Tehran, Iran
| | - Neda Aminoroaya
- Laser & Plasma Research Institute, Shahid Beheshti University G.C., Velenjak, Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44236, USA
| | - Ebrahim Behroodi
- Laser & Plasma Research Institute, Shahid Beheshti University G.C., Velenjak, Tehran, Iran
| | - Mahban Rahimifard
- The Institute of Pharmaceutical Sciences (TIPS), Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Latifi
- Laser & Plasma Research Institute, Shahid Beheshti University G.C., Velenjak, Tehran, Iran.
| |
Collapse
|
9
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|