1
|
Yang Y, Wang Y, Li Y, Hu X, Tong C, Xue C, Qin K. Micro-fluidic covalent immobilization of multi-gradient RGD peptides on a gelatin surface for studying endothelial cell migration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39453678 DOI: 10.1039/d4ay01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Collective endothelial migration is a hallmark of wound healing, which is regulated by spatial concentration gradients of extracellular biochemical factors. Arginine-glycine-aspartate (RGD) peptides play a vital role in regulating cell migration through specific binding to integrins. In this study, a micro-fluidic technology combined with a photopolymerization technique is developed to create gelatin methacryloyl (GelMA)-based substrates with various concentration gradients of RGD peptides. The capability of generating linear and nonlinear RGD concentration gradients was quantitatively verified through numerical simulation and immunohistochemical quantitative experiments. The results of the concentration gradients show a strong concurrence between the immunohistochemical quantification experiments and numerical simulations. Furthermore, endothelial migration experiments were conducted with various concentration gradients of RGD peptides. We have observed that endothelial cells on the surface of gels with a linear concentration gradient exhibit a larger cell area, a longer cell perimeter, and more stress fiber density. Furthermore, the cells demonstrate directional alignment and migration towards regions with a higher RGD concentration. High concentration gradients significantly enhance endothelial cell migration, consistent with observations on surfaces of gels with nonlinear concentration gradients. In brief, we proposed a simple and effective micro-fluidic photopolymerization technique capable of generating diverse concentration gradients of RGD and probing their effects on cell migration. The results suggest that regulating the RGD peptide concentration gradients can alter the migration of endothelial cells, showing potential for promoting wound healing.
Collapse
Affiliation(s)
- Yunong Yang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, No. 7166, Bao Tong West Str., Weifang 261053, Shandong Province, China
| | - Yongjiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Xuqu Hu
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Changgui Tong
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Kairong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| |
Collapse
|
2
|
Micro/nanofluidic devices for drug delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:9-39. [PMID: 35094782 DOI: 10.1016/bs.pmbts.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Micro/nanofluidic drug delivery systems have attracted significant attention as they offer unique advantages in targeted and controlled drug delivery. Based on the desired application, these systems can be categorized into three different groups: in vitro, in situ and in vivo microfluidic drug delivery platforms. In vitro microfluidic drug delivery platforms are closely linked with the emerging concept of lab-on-a-chip for cell culture studies. These systems can be used to administer drugs or therapeutic agents, mostly at the cellular or tissue level, to find the therapeutic index and can potentially be used for personalized medicine. In situ and in vivo microfluidic drug delivery platforms are still at the developmental stage and can be used for drug delivery at tissue or organ levels. A famous example of these systems are microneedles that can be used for painless and controllable delivery of drugs or vaccines through human skin. This chapter presents the cutting edge advances in the design and fabrication of in vitro microfluidic drug delivery systems that can be used for both cellular and tissue drug delivery. It also briefly discusses the in situ drug delivery platforms using microneedles.
Collapse
|
3
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, Oliveira JM, Truckenmüller R, Habibovic P. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. SCIENCE ADVANCES 2019; 5:eaaw1317. [PMID: 31131324 PMCID: PMC6531003 DOI: 10.1126/sciadv.aaw1317] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/16/2019] [Indexed: 05/17/2023]
Abstract
Awareness that traditional two-dimensional (2D) in vitro and nonrepresentative animal models may not completely emulate the 3D hierarchical complexity of tissues and organs is on the rise. Therefore, posterior translation into successful clinical application is compromised. To address this dearth, on-chip biomimetic microenvironments powered by microfluidic technologies are being developed to better capture the complexity of in vivo pathophysiology. Here, we describe a "tumor-on-a-chip" model for assessment of precision nanomedicine delivery on which we validate the efficacy of drug-loaded nanoparticles in a gradient fashion. The model validation was performed by viability studies integrated with live imaging to confirm the dose-response effect of cells exposed to the CMCht/PAMAM nanoparticle gradient. This platform also enables the analysis at the gene expression level, where a down-regulation of all the studied genes (MMP-1, Caspase-3, and Ki-67) was observed. This tumor-on-chip model represents an important development in the use of precision nanomedicine toward personalized treatment.
Collapse
Affiliation(s)
- M. R. Carvalho
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - D. Barata
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - L. M. Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - S. Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| | - R. L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
- Corresponding author.
| | - R. Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
- 300MICRONS GmbH, Daimlerstraße 35, 76185 Karlsruhe, Germany
| | - P. Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Netherlands
| |
Collapse
|