1
|
Schaner PE, Williams BB, Chen EY, Pettus JR, Schreiber WA, Kmiec MM, Jarvis LA, Pastel DA, Zuurbier RA, DiFlorio-Alexander RM, Paydarfar JA, Gosselin BJ, Barth RJ, Rosenkranz KM, Petryakov SV, Hou H, Tse D, Pletnev A, Flood AB, Wood VA, Hebert KA, Mosher RE, Demidenko E, Swartz HM, Kuppusamy P. First-In-Human Study in Cancer Patients Establishing the Feasibility of Oxygen Measurements in Tumors Using Electron Paramagnetic Resonance With the OxyChip. Front Oncol 2021; 11:743256. [PMID: 34660306 PMCID: PMC8517507 DOI: 10.3389/fonc.2021.743256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.
Collapse
Affiliation(s)
- Philip E. Schaner
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Benjamin B. Williams
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Eunice Y. Chen
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Jason R. Pettus
- Department of Pathology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Wilson A. Schreiber
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Maciej M. Kmiec
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Lesley A. Jarvis
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - David A. Pastel
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Rebecca A. Zuurbier
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Roberta M. DiFlorio-Alexander
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Joseph A. Paydarfar
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Benoit J. Gosselin
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Richard J. Barth
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Kari M. Rosenkranz
- Department of Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Sergey V. Petryakov
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Huagang Hou
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Dan Tse
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Alexandre Pletnev
- Department of Chemistry, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Ann Barry Flood
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Victoria A. Wood
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Kendra A. Hebert
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Robyn E. Mosher
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Eugene Demidenko
- Department of Biomedical Data Science, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Harold M. Swartz
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Periannan Kuppusamy
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Department of Radiology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Department of Chemistry, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
3
|
Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed Microdevices 2019; 21:71. [PMID: 31286244 DOI: 10.1007/s10544-019-0421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
EPR oximetry is established as a viable method for measuring the tissue oxygen level (partial pressure of oxygen, pO2) in animal models; however, it has not yet been established for measurements in humans. EPR oximetry requires an oxygen-sensing paramagnetic probe (molecular or particulate) to be placed at the site/organ of measurement, which may pose logistical and safety concerns, including invasiveness of the probe-placement procedure as well as lack of temporal stability and sensitivity for long-term (repeated) measurements, and possible toxicity in the short- and long-term. In the past, we have developed an implantable oxygen-sensing probe, called OxyChip, which we have successfully established for oximetry in pre-clinical animal models (Hou et al. Biomed. Microdevices 20, 29, 2018). Currently, OxyChip is being evaluated in a limited clinical trial in cancer patients. A major limitation of OxyChip is that it is a large (1.4 mm3) implant and hence not suitable for measuring oxygen heterogeneity that may be present in solid tumors, chronic wounds, etc. In this report, we describe the development of a substantially smaller version of OxyChip (0.07 mm3 or 70 cubic micron), called mChip, that can be placed in the tissue of interest using a 23G syringe-needle with minimal invasiveness. Using in vitro and in vivo models, we have shown that the microchip provides adequate EPR sensitivity, stability, and biocompatibility and thus enables robust, repeated, and simultaneous measurement from multiple implants providing mean and median pO2 values in the implanted region. The mChips will be particularly useful for those applications that require repeated measurements of mean/median pO2 in superficial tissues and malignancies.
Collapse
|