1
|
Groenewald A, Burns KE, Tingle MD, Ward ML, Power AS. Acute exposure to clozapine and sodium valproate impairs oxidative phosphorylation in human cardiac mitochondria. Toxicol Rep 2025; 14:101990. [PMID: 40151211 PMCID: PMC11946755 DOI: 10.1016/j.toxrep.2025.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The only antipsychotic that is approved and recommended for the treatment of otherwise treatment-resistant schizophrenia is clozapine (CLZ). Unfortunately, CLZ can cause serious cardiotoxicities such as myocarditis and cardiomyopathy. The co-administration of sodium valproate (VPA) during initiation is a well-established risk factor for the development of CLZ-induced myocarditis. However, the mechanisms behind these cardiac adverse effects and the role of VPA co-administration are not understood. Preliminary evidence for the development of cardiac mitochondrial dysfunction has previously been reported in both rodent models and immortalised cell lines. This investigation aimed to determine the functional effects of CLZ and VPA on human cardiac mitochondria to improve the current understanding of how cardiotoxicity develops. Small samples of human atrial tissue from consenting patients undergoing a coronary artery bypass grafting procedure were freshly collected and utilised to investigate the acute effects of each drug on mitochondrial O2 consumption using high-resolution respirometry. Both drugs significantly decreased mitochondrial O2 consumption by a magnitude of 32 % following CLZ exposure, 25 % following VPA exposure, and 25 % following combined CLZ+VPA exposure during complex I- and II-linked oxidative phosphorylation. These results demonstrate acute bioenergetic dysfunction with exposure to both drugs, alone and in combination. We propose that cardiac mitochondria become a key focus in future research seeking to improve the risk-predictive, diagnostic, and treatment guidelines surrounding CLZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amanda Groenewald
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathryn E. Burns
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Malcolm D. Tingle
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Amelia S. Power
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Kalimullina T, Sachdeva R, Pawar K, Cao S, Marwaha A, Liu J, Plunet W, Squair J, West CR, Tetzlaff W, Krassioukov AV. Neuroprotective agents ineffective in mitigating autonomic dysreflexia following experimental spinal cord injury. Exp Neurol 2024; 382:114993. [PMID: 39393671 DOI: 10.1016/j.expneurol.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Loss of supraspinal cardiovascular control and secondary damage following spinal cord injury (SCI) lead to cardiovascular dysfunction, where autonomic dysreflexia (AD), triggered by stimuli below the injury, can cause uncontrolled blood pressure (BP) surges, posing severe health risks such as stroke and seizures. While anti-inflammatory neuroprotective agents have been studied for motor recovery, their impact on cardiovascular function remains under investigated. The objective was to assess the efficacy of four clinically approved neuroprotective agents in promoting cardiovascular recovery following SCI. METHODS Male Wistar rats received contusion at the third thoracic spinal segment (T3). Fluoxetine, Glyburide, Valproic acid, and Indomethacin were first administered at 1 h or 6 h post-SCI, and every 12 h for two weeks thereafter. Four weeks following SCI, hemodynamics were measured at rest and during colorectal distension. Locomotor function was assessed prior to SCI and weekly for four weeks after SCI, using the Basso-Beattie-Bresnahan (BBB) locomotor scale. Quantitative comparisons of lesion area were performed. RESULTS Contrary to the published literature, Indomethacin and Valproic acid resulted in high morbidity and mortality rates 60 % and 40 % respectively) within 2-3 days of administration. Fluoxetine, and Glyburide were well-tolerated. There were no differences in change in systolic BP with colorectal distension compared to control i.e., all experimental groups experienced severe episodes of AD [F(6, 67) = 0.94, p = 0.47]. There was no significant difference in BBB scores in any experimental group compared to control [F(18, 252) = 0.3, p = 0.99]. No between-group differences were observed in tissue sparing at the lesion epicentre [F(6, 422) = 6.98, p = 0.29]. DISCUSSION Despite promising beneficial effect reported in previous studies, none of the drugs demonstrated improvement in cardiovascular or motor function. Indomethacin and Valproic acid exhibited unexpected high mortality at doses deemed safe in the literature. This emphasizes the necessity for reproducibility studies in pre-clinical research and underscores the importance of publishing null findings to guide future investigations.
Collapse
Affiliation(s)
- Tamila Kalimullina
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada.
| | - Kiran Pawar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Steven Cao
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Arshdeep Marwaha
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Ward Plunet
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jordan Squair
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Cell & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
3
|
Iannelli F, Lombardi R, Costantini S, Roca MS, Addi L, Bruzzese F, Di Gennaro E, Budillon A, Pucci B. Integrated proteomics and metabolomics analyses reveal new insights into the antitumor effects of valproic acid plus simvastatin combination in a prostate cancer xenograft model associated with downmodulation of YAP/TAZ signaling. Cancer Cell Int 2024; 24:381. [PMID: 39550583 PMCID: PMC11569608 DOI: 10.1186/s12935-024-03573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite advancements in therapeutic approaches, including taxane-based chemotherapy and androgen receptor-targeting agents, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable tumor, highlighting the need for novel strategies that can target the complexities of this disease and bypass the development of drug resistance mechanisms. We previously demonstrated the synergistic antitumor interaction of valproic acid (VPA), an antiepileptic agent with histone deacetylase inhibitory activity, with the lipid-lowering drug simvastatin (SIM). This combination sensitizes mCRPC cells to docetaxel treatment both in vitro and in vivo by targeting the cancer stem cell compartment via mevalonate pathway/YAP axis modulation. METHODS Here, using a combined proteomic and metabolomic/lipidomic approach, we characterized tumor samples derived from 22Rv1 mCRPC cell-xenografted mice treated with or without VPA/SIM and performed an in-depth bioinformatics analysis. RESULTS We confirmed the specific impact of VPA/SIM on the Hippo-YAP signaling pathway, which is functionally related to the modulation of cancer-related extracellular matrix biology and metabolic reprogramming, providing further insights into the molecular mechanism of the antitumor effects of VPA/SIM. CONCLUSIONS In this study, we present an in-depth exploration of the potential to repurpose two generic, safe drugs for mCRPC treatment, valproic acid (VPA) and simvastatin (SIM), which already show antitumor efficacy in combination, primarily affecting the cancer stem cell compartment via MVP/YAP axis modulation. Bioinformatics analysis of the LC‒MS/MS and 1H‒NMR metabolomics/lipidomics results confirmed the specific impact of VPA/SIM on Hippo-YAP.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy.
| | - Biagio Pucci
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| |
Collapse
|
4
|
Zhao M, Li G, Zhao L. The role of SIRT1-FXR signaling pathway in valproic acid induced liver injury: a quantitative targeted metabolomic evaluation in epileptic children. Front Pharmacol 2024; 15:1477619. [PMID: 39575388 PMCID: PMC11578826 DOI: 10.3389/fphar.2024.1477619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Aim This study aimed to gain deeper insights into the hepatotoxicity mechanisms of valproic acid (VPA), as well as to identify potential risk markers for VPA-induced hepatotoxicity. Methods Twenty-two children with epilepsy treated with VPA monotherapy were divided into a normal liver function (NLF) group, a mild abnormal liver function (ANLF1) group, and a serious abnormal liver function (ANLF2) group based on their liver function indicator levels. The full quantitative targeted metabolomics technique was used to systematically investigate how the differential endogenous metabolic components change with the development of liver injury. Results A total of 195 metabolic components were quantitatively analyzed. Nineteen identified metabolites, including five organic acids, four short-chain fatty acids, four amino acids, three fatty acids, and three benzenoids, differed significantly among the three groups, showing a strong association with VPA-induced hepatotoxicity. Only three bile acid metabolites, taurodeoxycholic acid, taurochenodeoxycholic acid, and deoxycholic acid, were significantly different between the ANLF1 and ANLF2 groups, increasing at first and then decreasing with the aggravation of liver injury. The mechanistic evaluation showed that SRT1720 activation could alleviate the severity of liver function abnormalities induced by VPA. Immunocoprecipitation indicated that VPA significantly increased the acetylation level of FXR, and the application of agonist SRT1720 can antagonize the acetylation of FXR by VPA. Conclusion Nineteen identified metabolites showed a strong association with hepatotoxicity and three bile acid metabolites changed with the development of liver injury. The SIRT1-FXR pathway was firstly proposed to participate in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
| | | | - Limei Zhao
- Department of pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
6
|
Yin Z, Li P. Association of UGT1A6 gene polymorphisms with sodium valproate-induced tremor in patients with epilepsy. Seizure 2024; 120:56-60. [PMID: 38908142 DOI: 10.1016/j.seizure.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Individual susceptibility to sodium valproate (VPA)-induced tremors may be due to genetic polymorphisms in the gene encoding the uridine diphosphate glucuronosyltransferase (UGT) enzyme, which affec the drug's clinical efficacy and cause toxic side effects. This study aimed to investigate the association between UGT1A6 polymorphisms and VPA-induced tremors in patients with epilepsy. METHODS In total, 128 patients with epilepsy were enrolled. Patients with epilepsy who received VPA were divided into tremor and non-tremor groups. Polymerase chain reaction-restriction fragment length polymorphism was used to investigate the genotype of UGT1A6 polymorphisms. RESULTS Carriers of the UGT1A6 A541G mutant genotype conferred a higher risk of tremor than wild-type carriers (odds ratio 2.128, P = 0.045). Logistic regression analysis showed that the A541G mutant genotype was a significant genetic risk factor for VPA-induced tremors. This suggests that individual susceptibility to VPA-induced tremors may result, at least partially, from genetic variation in UGT1A6 A541G. CONCLUSIONS Patients with epilepsy carrying the UGT1A6 A541G mutant genotype may have VPA-induced tremors, and early detection of this genotype will help guide the clinical individualizsation of VPA treatment.
Collapse
Affiliation(s)
- Zheng Yin
- Qinghai University Graduate School, Xining, China
| | - Pei Li
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China.
| |
Collapse
|
7
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
8
|
Ortega-Vallbona R, Méndez R, Tolosa L, Escher SE, Castell JV, Gozalbes R, Serrano-Candelas E. Uncovering the toxicity mechanisms of a series of carboxylic acids in liver cells through computational and experimental approaches. Toxicology 2024; 504:153764. [PMID: 38428665 DOI: 10.1016/j.tox.2024.153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Hepatotoxicity poses a significant concern in drug design due to the potential liver damage that can be caused by new drugs. Among common manifestations of hepatotoxic damage is lipid accumulation in hepatic tissue, resulting in liver steatosis or phospholipidosis. Carboxylic derivatives are prone to interfere with fatty acid metabolism and cause lipid accumulation in hepatocytes. This study investigates the toxic behaviour of 24 structurally related carboxylic acids in hepatocytes, specifically their ability to cause accumulation of fatty acids and phospholipids. Using high-content screening (HCS) assays, we identified two distinct lipid accumulation patterns. Subsequently, we developed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) models to determine relevant molecular substructures and descriptors contributing to these adverse effects. Additionally, we calculated physicochemical properties associated with lipid accumulation in hepatocytes and examined their correlation with our chemical structure characteristics. To assess the applicability of our findings to a wide range of chemical compounds, we employed two external datasets to evaluate the distribution of our QSAR descriptors. Our study highlights the significance of subtle molecular structural variations in triggering hepatotoxicity, such as the presence of nitrogen or the specific arrangement of substitutions within the carbon chain. By employing our comprehensive approach, we pinpointed specific molecules and elucidated their mechanisms of toxicity, thus offering valuable insights to guide future toxicology investigations.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain
| | - Rebeca Méndez
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, C/ Monforte de Lemos, Madrid 28029, Spain
| | - Sylvia E Escher
- Fraunhofer ITEM, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, Hannover 30625, Germany
| | - José V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular. Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez, 15, Valencia 46010, Spain; CIBEREHD, ISCIII, C/ Monforte de Lemos, Madrid 28029, Spain.
| | - Rafael Gozalbes
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain; Moldrug AI Systems SL, c/Olimpia Arozena Torres 45, Valencia 46018, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain
| |
Collapse
|
9
|
Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol 2024; 222:116034. [PMID: 38307136 DOI: 10.1016/j.bcp.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.
Collapse
Affiliation(s)
- Marco F Moedas
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ricardo J M Simões
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
10
|
Perković Vukčević N, Mijatović Jovin V, Vuković Ercegović G, Antunović M, Kelečević I, Živanović D, Vučinić S. Carbapenems as Antidotes for the Management of Acute Valproic Acid Poisoning. Pharmaceuticals (Basel) 2024; 17:257. [PMID: 38399472 PMCID: PMC10893297 DOI: 10.3390/ph17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Valproic acid (VPA) is a broad-spectrum drug primarily used in the treatment of epilepsy and bipolar disorder. It is not an uncommon occurrence for VPA to cause intoxication. The established treatment of VPA poisoning includes supportive care, multiple doses of activated charcoal, levocarnitine and hemodialysis/hemoperfusion. There is a clinically significant interaction between carbapenem antibiotics and VPA. By affecting enterohepatic recirculation, carbapenems can increase the overall VPA clearance from the blood of intoxicated patients. It is suggested that carbapenems could successfully be used as antidotes in the treatment of acute VPA poisonings. THE AIM To evaluate the effectiveness of carbapenems in the treatment of patients acutely poisoned by VPA. PATIENTS AND METHODS This retrospective study included patients acutely poisoned by VPA and treated with carbapenems at the Department of Clinical Toxicology at the Military Medicinal Academy in Serbia for a two-year period. RESULTS After the admission, blood concentrations of VPA kept increasing, reaching their peak at 114-724 mg/L, while the mental state of the patients continued to decline, prompting a decision to introduce carbapenems. After the introduction of carbapenems, the concentrations of the drug dropped by 46-93.59% (average 72%) followed by rapid recovery of consciousness. Ten out of eleven patients had positive outcomes, while one patient died. The most commonly observed complication in our group of patients was bronchopneumonia. CONCLUSIONS The application of carbapenems for the management of acute VPA poisoning might be a useful and effective treatment option.
Collapse
Affiliation(s)
- Nataša Perković Vukčević
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Vesna Mijatović Jovin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Vuković Ercegović
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Marko Antunović
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| | - Igor Kelečević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dejan Živanović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Department of Psychology, College of Social Work, 11000 Belgrade, Serbia
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty Military Medical Academy, University of Defense, 11042 Belgrade, Serbia
| |
Collapse
|
11
|
Ma L, Wang D. Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients. Clin Toxicol (Phila) 2024; 62:101-106. [PMID: 38512019 DOI: 10.1080/15563650.2024.2316144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Dan Wang
- School of life science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Canbolat F, Demir N, Yayıntas OT, Pehlivan M, Eldem A, Ayna TK, Senel M. Chitosan Nanoparticles Loaded with Quercetin and Valproic Acid: A Novel Approach for Enhancing Antioxidant Activity against Oxidative Stress in the SH-SY5Y Human Neuroblastoma Cell Line. Biomedicines 2024; 12:287. [PMID: 38397889 PMCID: PMC10887077 DOI: 10.3390/biomedicines12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Multiple drug-delivery systems obtained by loading nanoparticles (NPs) with different drugs that have different physicochemical properties present a promising strategy to achieve synergistic effects between drugs or overcome undesired effects. This study aims to develop a new NP by loading quercetin (Que) and valproic acid (VPA) into chitosan. In this context, our study investigated the antioxidant activities of chitosan NPs loaded with single and dual drugs containing Que against oxidative stress. METHOD The synthesis of chitosan NPs loaded with a single (Que or VPA) and dual drug (Que and VPA), the characterization of the NPs, the conducting of in vitro antioxidant activity studies, and the analysis of the cytotoxicity and antioxidant activity of the NPs in human neuroblastoma SH-SY5Y cell lines were performed. RESULT The NP applications that protected cell viability to the greatest extent against H2O2-induced cell damage were, in order, 96 µg/mL of Que-loaded chitosan NP (77.30%, 48 h), 2 µg/mL of VPA-loaded chitosan NP (70.06%, 24 h), 96 µg/mL of blank chitosan NP (68.31%, 48 h), and 2 µg/mL of Que- and VPA-loaded chitosan NP (66.03%, 24 h). CONCLUSION Our study establishes a successful paradigm for developing drug-loaded NPs with a uniform and homogeneous distribution of drugs into NPs. Chitosan NPs loaded with both single and dual drugs possessing antioxidant activity were successfully developed. The capability of chitosan NPs developed at the nanometer scale to sustain cell viability in SH-SY5Y cell lines implies the potential of intranasal administration of chitosan NPs for future studies, offering protective effects in central nervous system diseases.
Collapse
Affiliation(s)
- Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye
| | - Neslihan Demir
- Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | | | - Melek Pehlivan
- Vocational School of Health Services, İzmir Katip Çelebi University, İzmir 35620, Türkiye;
| | - Aslı Eldem
- Medical Biology Department, Faculty of Medicine, İzmir Katip Çelebi University, İzmir 35620, Türkiye; (A.E.); (T.K.A.)
| | - Tulay Kilicaslan Ayna
- Medical Biology Department, Faculty of Medicine, İzmir Katip Çelebi University, İzmir 35620, Türkiye; (A.E.); (T.K.A.)
- Tissue Typing Laboratory, İzmir Tepecik Education and Research Hospital, İzmir 35180, Türkiye
| | - Mehmet Senel
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Türkiye;
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Ornoy A, Echefu B, Becker M. Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int J Mol Sci 2023; 25:390. [PMID: 38203562 PMCID: PMC10779436 DOI: 10.3390/ijms25010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Valproic acid (VPA) is a very effective anticonvulsant and mood stabilizer with relatively few side effects. Being an epigenetic modulator, it undergoes clinical trials for the treatment of advanced prostatic and breast cancer. However, in pregnancy, it seems to be the most teratogenic antiepileptic drug. Among the proven effects are congenital malformations in about 10%. The more common congenital malformations are neural tube defects, cardiac anomalies, urogenital malformations including hypospadias, skeletal malformations and orofacial clefts. These effects are dose related; daily doses below 600 mg have a limited teratogenic potential. VPA, when added to other anti-seizure medications, increases the malformations rate. It induces malformations even when taken for indications other than epilepsy, adding to the data that epilepsy is not responsible for the teratogenic effects. VPA increases the rate of neurodevelopmental problems causing reduced cognitive abilities and language impairment. It also increases the prevalence of specific neurodevelopmental syndromes like autism (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). High doses of folic acid administered prior to and during pregnancy might alleviate some of the teratogenic effect of VPA and other AEDs. Several teratogenic mechanisms are proposed for VPA, but the most important mechanisms seem to be its effects on the metabolism of folate, SAMe and histones, thus affecting DNA methylation. VPA crosses the human placenta and was found at higher concentrations in fetal blood. Its concentrations in milk are low, therefore nursing is permitted. Animal studies generally recapitulate human data.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
14
|
Zhang L, Liu M, Qin W, Shi D, Mao J, Li Z. Modeling the protein binding non-linearity in population pharmacokinetic model of valproic acid in children with epilepsy: a systematic evaluation study. Front Pharmacol 2023; 14:1228641. [PMID: 37869748 PMCID: PMC10587682 DOI: 10.3389/fphar.2023.1228641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Several studies have investigated the population pharmacokinetics (popPK) of valproic acid (VPA) in children with epilepsy. However, the predictive performance of these models in the extrapolation to other clinical environments has not been studied. Hence, this study evaluated the predictive abilities of pediatric popPK models of VPA and identified the potential effects of protein binding modeling strategies. Methods: A dataset of 255 trough concentrations in 202 children with epilepsy was analyzed to assess the predictive performance of qualified models, following literature review. The evaluation of external predictive ability was conducted by prediction- and simulation-based diagnostics as well as Bayesian forecasting. Furthermore, five popPK models with different protein binding modeling strategies were developed to investigate the discrepancy among the one-binding site model, Langmuir equation, dose-dependent maximum effect model, linear non-saturable binding equation and the simple exponent model on model predictive ability. Results: Ten popPK models were identified in the literature. Co-medication, body weight, daily dose, and age were the four most commonly involved covariates influencing VPA clearance. The model proposed by Serrano et al. showed the best performance with a median prediction error (MDPE) of 1.40%, median absolute prediction error (MAPE) of 17.38%, and percentages of PE within 20% (F20, 55.69%) and 30% (F30, 76.47%). However, all models performed inadequately in terms of the simulation-based normalized prediction distribution error, indicating unsatisfactory normality. Bayesian forecasting enhanced predictive performance, as prior observations were available. More prior observations are needed for model predictability to reach a stable state. The linear non-saturable binding equation had a higher predictive value than other protein binding models. Conclusion: The predictive abilities of most popPK models of VPA in children with epilepsy were unsatisfactory. The linear non-saturable binding equation is more suitable for modeling non-linearity. Moreover, Bayesian forecasting with prior observations improved model fitness.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Dandan Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeyun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Wang WJ, Zhao YT, Dai HR, Zhang YY, Wang J, Guo HL, Ding XS, Chen F. Successful LC-MS/MS assay development and validation for determination of valproic acid and its metabolites supporting proactive pharmacovigilance. J Pharm Biomed Anal 2023; 234:115538. [PMID: 37354631 DOI: 10.1016/j.jpba.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Valproic acid (VPA) is a well-documented contributor to liver injury, which is likely caused by the formation of its toxic metabolites. Monitoring VPA and its metabolites is very meaningful for the pharmacovigilance, but the availability of a powerful assay is a prerequisite. In this study, for the first time, a sensitive and specific LC-MS/MS method was developed and validated to simultaneously quantify the concentrations of VPA and its six pestering isomer metabolites (3-OH-VPA, 4-OH-VPA, 5-OH-VPA, 2-PGA, VPA-G, and 2-ene-VPA) in human plasma, using 5-OH-VPA-d7 and VPA-d6 as the internal standards (ISs). We also figured out another tricky problem that the concentrations of the parent drug and the metabolites vary widely. Of note, after protein precipitation and dilution with acetonitrile (ACN) and 50% ACN successively, the analytes and the ISs were successfully separated on a Kinetex C18 column. Intriguingly, sacrificing its signal intensity by elevated collision energy of VPA finally achieved the simultaneous determination. As expected, the method showed great linearity (r > 0.998) over the concentration ranges for all analytes. The inter-day and intra-day accuracy and precision were both acceptable. The method was successfully applied in 127 children with epilepsy. This novel assay will support the VPA-associated pharmacovigilance in the future.
Collapse
Affiliation(s)
- Wei-Jun Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Tagliatti V, Descamps C, Lefèvre M, Colet JM. Predicting Valproate-Induced Liver Injury Using Metabolomic Analysis of Ex Ovo Chick Embryo Allantoic Fluid. Metabolites 2023; 13:721. [PMID: 37367880 DOI: 10.3390/metabo13060721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The use of sensitive animals in toxicological studies tends to be limited. Even though cell culture is an attractive alternative, it has some limitations. Therefore, we investigated the potential of the metabolomic profiling of the allantoic fluid (AF) from ex ovo chick embryos to predict the hepatotoxicity of valproate (VPA). To this end, the metabolic changes occurring during embryo development and following exposure to VPA were assessed using 1H-NMR spectroscopy. During embryonic development, our findings indicated a metabolism progressively moving from anaerobic to aerobic, mainly based on lipids as the energy source. Next, liver histopathology of VPA-exposed embryos revealed abundant microvesicles indicative of steatosis and was metabolically confirmed via the determination of lipid accumulation in AF. VPA-induced hepatotoxicity was further demonstrated by (i) lower glutamine levels, precursors of glutathione, and decreased β-hydroxybutyrate, an endogenous antioxidant; (ii) changes in lysine levels, a precursor of carnitine, which is essential in the transport of fatty acids to the mitochondria and whose synthesis is known to be reduced by VPA; and (iii) choline accumulation that promotes the export of hepatic triglycerides. In conclusion, our results support the use of the ex ovo chick embryo model combined with the metabolomic assessment of AF to rapidly predict drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Vanessa Tagliatti
- Laboratory of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Caroline Descamps
- Laboratory of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Margaux Lefèvre
- Laboratory of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Jean-Marie Colet
- Laboratory of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
17
|
Shnayder NA, Grechkina VV, Trefilova VV, Efremov IS, Dontceva EA, Narodova EA, Petrova MM, Soloveva IA, Tepnadze LE, Reznichenko PA, Al-Zamil M, Altynbekova GI, Strelnik AI, Nasyrova RF. Valproate-Induced Metabolic Syndrome. Biomedicines 2023; 11:biomedicines11051499. [PMID: 37239168 DOI: 10.3390/biomedicines11051499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Violetta V Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Narcology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evgenia A Dontceva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Federal Centre for Neurosurgery, 630087 Novosibirsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Irina A Soloveva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Liia E Tepnadze
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Polina A Reznichenko
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Gulnara I Altynbekova
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Anna I Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
18
|
Sekiguchi K, Mashiko T, Koide R, Kawai K, Fujimoto S, Tanaka R. A Case of Long-Term Exposure to Valproic Acid Mimicking Tremor-Dominant Parkinson's Disease. Tremor Other Hyperkinet Mov (N Y) 2023; 13:17. [PMID: 37214540 PMCID: PMC10198224 DOI: 10.5334/tohm.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background Valproic acid is associated with increased risks of tremor and parkinsonism. Case Report A 67-year-old man with a diagnosis of epilepsy who had been treated with valproic acid (VPA) for 32 years noticed right-dominant upper-limb resting tremor accompanied by mild rigidity and bradykinesia. He was initially diagnosed with tremor-dominant Parkinson's disease (TDPD), but dopamine transporter single-photon emission computed tomography demonstrated no nigrostriatal degeneration. At 3 months after discontinuing VPA, his symptoms dramatically improved. Discussion VPA-induced tremor usually consists of postural or kinetic tremor without asymmetry. Our case indicated that careful evaluation is needed, even in cases of asymmetrical resting tremor and mild parkinsonism resembling TDPD after long term exposure to VPA. Highlights We report an atypical case of valproic acid-induced tremor and parkinsonism that mimics tremor-dominant Parkinson's disease. Physicians should not exclude the possible relation to valproic acid in patients presenting unilateral resting tremor and parkinsonism even in the absence of long-term side effects.
Collapse
Affiliation(s)
- Kazumasa Sekiguchi
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Mashiko
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
19
|
Hoogstraten CA, Lyon JJ, Smeitink JAM, Russel FGM, Schirris TJJ. Time to Change: A Systems Pharmacology Approach to Disentangle Mechanisms of Drug-Induced Mitochondrial Toxicity. Pharmacol Rev 2023; 75:463-486. [PMID: 36627212 DOI: 10.1124/pharmrev.122.000568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, which is associated with almost half of all Food and Drug Administration black box warnings, a variety of drug withdrawals, and attrition of drug candidates. This can mainly be attributed to a historic lack of sensitive and specific assays to identify the mechanisms underlying mitochondrial toxicity during drug development. In the last decade, a better understanding of drug-induced mitochondrial dysfunction has been achieved by network-based and structure-based systems pharmacological approaches. Here, we propose the implementation of a tiered systems pharmacology approach to detect adverse mitochondrial drug effects during preclinical drug development, which is based on a toolset developed to study inherited mitochondrial disease. This includes phenotypic characterization, profiling of key metabolic alterations, mechanistic studies, and functional in vitro and in vivo studies. Combined with binding pocket similarity comparisons and bottom-up as well as top-down metabolic network modeling, this tiered approach enables identification of mechanisms underlying drug-induced mitochondrial dysfunction. After validation of these off-target mechanisms, drug candidates can be adjusted to minimize mitochondrial activity. Implementing such a tiered systems pharmacology approach could lead to a more efficient drug development trajectory due to lower drug attrition rates and ultimately contribute to the development of safer drugs. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs adversely affect mitochondrial function, which can be detected using phenotypic assays. However, these methods provide only limited insight into the underlying mechanisms. In recent years, a better understanding of drug-induced mitochondrial dysfunction has been achieved by network-based and structure-based system pharmacological approaches. Their implementation in preclinical drug development could reduce the number of drug failures, contributing to safer drug design.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Jonathan J Lyon
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (C.A.H., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (C.A.H., J.A.M.S., F.G.M.R., T.J.J.S.), and Department of Pediatrics (J.A.M.S.), Radboud University Medical Center, Nijmegen, The Netherlands; GlaxoSmithKline, Safety Assessment, Ware, Hertfordshire, United Kingdom (J.J.L.); and Khondrion BV, Nijmegen, The Netherlands (J.A.M.S.)
| |
Collapse
|
20
|
Schiavo A, Maldonado C, Vázquez M, Fagiolino P, Trocóniz IF, Ibarra M. Quantitative systems pharmacology Model to characterize valproic acid-induced hyperammonemia and the effect of L-carnitine supplementation. Eur J Pharm Sci 2023; 183:106399. [PMID: 36740101 DOI: 10.1016/j.ejps.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Valproic acid (VPA) is a short-chain fatty acid widely prescribed in the treatment of seizure disorders and epilepsy syndromes, although its therapeutic value may be undermined by its toxicity. VPA serious adverse effects are reported to have a significant and dose-dependent incidence, many associated with VPA-induced hyperammonemia. This effect has been linked with reduced levels of carnitine; an endogenous compound involved in fatty acid's mitochondrial β-oxidation by facilitation of its entrance via the carnitine shuttle. High exposure to VPA can lead to carnitine depletion causing a misbalance between the intra-mitochondrial β-oxidation and the microsomal ω-oxidation, a pathway that produces toxic metabolites such as 4-en-VPA which inhibits ammonia elimination. Moreover, a reduction in carnitine levels might be also related to VPA-induced obesity and lipids disorder. In turn, L-carnitine supplementation (CS) has been recommended and empirically used to reduce VPA's hepatotoxicity. The aim of this work was to develop a Quantitative Systems Pharmacology (QSP) model to characterize VPA-induced hyperammonemia and evaluate the benefits of CS in preventing hyperammonemia under both chronic treatment and after VPA overdosing. The QSP model included a VPA population pharmacokinetics model that allowed the prediction of total and unbound concentrations after single and multiple oral doses considering its saturable binding to plasma proteins. Predictions of time courses for 2-en-VPA, 4-en-DPA, VPA-glucuronide, carnitine, ammonia and urea levels, and for the relative change in fatty acids, Acetyl-CoA, and glutamate reflected the VPA induced changes and the efficacy of the treatment with L-carnitine. The QSP model was implemented to give a rational basis for the L-carnitine dose selection to optimize CS depending on VPA dosage regime and to assess the currently recommended L-carnitine rescue therapy after VPA overdosing. Results show that a L-carnitine dose equal to the double of the VPA dose using the same interdose interval would maintain the ammonia levels at baseline. The QSP model may be expanded in the future to describe other adverse events linked to VPA-induced changes in endogenous compounds.
Collapse
Affiliation(s)
- Alejandra Schiavo
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay; Graduate Program in Chemistry, Faculty of Chemistry, Universidad de la República. Montevideo, Uruguay
| | - Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra. Pamplona, Spain; IdiSNA; Navarra Institute for Health Research, Pamplona, Spain
| | - Manuel Ibarra
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay.
| |
Collapse
|
21
|
Rajesh V, Kokilavani A, Jayaseelan S, Gomathi S, Vishali K, Kumudhavalli MV. Embryonic exposure to acetyl-L-carnitine protects against valproic acid-induced cardiac malformation in zebrafish model. Amino Acids 2023:10.1007/s00726-023-03256-7. [PMID: 36894749 DOI: 10.1007/s00726-023-03256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Worldwide, estimated counts of about 7.9 million children are born with serious birth defects. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants represents a major contributing factor to congenital malformations. In earlier investigation, we explored cardiac malformation caused by valproic acid (VPA) during early developing stages of zebrafish. Since heart depends on mitochondrial fatty acid oxidative metabolism for energy demands in which carnitine shuttle has a major role, the present study aimed to investigate the effect of acetyl-L-carnitine (AC) against VPA-induced cardiac malformation in developing zebrafish. Initially, AC was subjected to toxicological evaluation, and two micromolar concentrations (25 µM and 50 µM) were selected for evaluation. A sub-lethal concentration of VPA (50 µM) was selected to induce cardiac malformation. The embryos were grouped and the drug exposures were made at 2.5 h post-fertilization (hpf). The cardiac development and functioning was monitored. A progressive decline in cardiac functioning was noted in group exposed to VPA 50 µM. At 96 hpf and 120 hpf, the morphology of heart was severely affected with the chambers which became elongated and string-like accompanied by histological changes. Acridine orange staining showed accumulation of apoptotic cells. Group exposed to VPA 50 µM with AC 50 µM showed a significant reduction in pericardial sac edema with morphological, functional and histological recovery in developing heart. Moreover, reduced number of apoptotic cells was noted. The improvement with AC might be due to restoration of carnitine homeostasis for cardiac energy metabolism in developing heart.
Collapse
Affiliation(s)
- Venugopalan Rajesh
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India.
| | - Annadurai Kokilavani
- Department of Pharmacology, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Subramanian Jayaseelan
- Department of Pharmaceutical Analysis, The Erode College of Pharmacy and Research Institute, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Swaminathan Gomathi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ottacamund, Nilgiris District, Ooty, Tamil Nadu, 643001, India
| | - Korrapati Vishali
- Department of Pharmacology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Manni Venkatachari Kumudhavalli
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Kondappanaickenpatti, Yercaud Main Road, Salem, Tamil Nadu, 636008, India
| |
Collapse
|
22
|
Fluphenazine-Induced Neurotoxicity with Acute Almost Transient Parkinsonism and Permanent Memory Loss: Lessons from a Case Report. Int J Mol Sci 2023; 24:ijms24032968. [PMID: 36769288 PMCID: PMC9917624 DOI: 10.3390/ijms24032968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We report the singular case of a 31-year-old woman who developed very serious Fluphenazine-induced parkinsonism over a few days due to a doubly incongruent drug prescription by indication and dosage having been applied to a healthy subject over one week instead of seven months. Unlike gradual drug-induced parkinsonism, our patient experienced acute extrapyramidal syndrome (EPS), reaching significant motor and sphincter disability in just a few days, followed by a gradual incomplete recovery over more than six months. In fact, after drug discontinuation, hypomimia and slight left hemi-somatic rigidity with bradykinesia remained, as well as stable non-progressive memory disturbances. Despite bio-humoral and instrumental investigations and DaTScan were negative, MRI post-analysis evidenced a 6.5% loss in brain volume. Specifically, irreversible cortical and sub-cortical grey matter reduction and cerebrospinal fluid space enlargement with spared white matter were found. Our observations suggest that the sudden availability of Fluphenazine results in a kind of plateau effect of parkinsonism presentation, partially reversible due to the neurotoxic drug effect on the cortical and sub-cortical grey matter, resulting in asymmetric EPS and stable memory loss, respectively. Our report confirms the debated neurotoxicity of first-generation neuroleptics and the postulated theory of differential susceptibility to the cytotoxic stressors on the central nervous system.
Collapse
|
23
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
24
|
Valproic acid-induced hyperammonemia in neuropsychiatric disorders: a 2-year clinical survey. Psychopharmacology (Berl) 2023; 240:149-156. [PMID: 36459199 DOI: 10.1007/s00213-022-06289-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Valproic acid (VPA)-induced hyperammonemia (HA) is a rare adverse effect reported even at therapeutic VPA levels. The present study aimed to investigate the characteristics of VPA-induced HA and its association with the total dose, duration, and level of VPA. This study also investigated whether the use of VPA in combination with other medications has any effect on elevating serum ammonia levels. METHODS A total of 316 patients with a history of VPA prescribed for underlying neuropsychiatric disorders were found eligible for the study. Data including demographic information, medical history and diagnosis, VPA dosage, VPA treatment duration, VPA level, and ammonia serum level were extracted and reviewed from our hospital records. The history of other neuropsychiatric medications was also included. RESULTS Among 316 patients receiving VPA, HA was observed in 54 (17%) patients, and 15 patients were symptomatic among them. There was no significant difference in demographics between symptomatic and asymptomatic HA groups except for the number of co-administrated medications (p = 0.044). Besides, VPA duration and dose did not show a significant difference between the two groups. Additionally, the VPA level was significantly higher in patients who used risperidone in addition to VPA (p = 0.019). Eventually, VPA level showed a significant association with ammonia level (p = 0.025) and symptomatic HA (p = 0.033) after adjusting for possible confounders. CONCLUSION VPA level showed a significant association with ammonia level and symptomatic HA. Moreover, co-administrated medications such as risperidone might have an impact on the serum level of VPA. Further studies are recommended to confirm these findings.
Collapse
|
25
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N. Drug-induced mitochondrial toxicity: Risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023; 14:1123928. [PMID: 36860368 PMCID: PMC9969099 DOI: 10.3389/fendo.2023.1123928] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling. Compelling evidence states that improving the function of the mitochondria may provide a positive therapeutic tool for improving insulin sensitivity. There has been a rapid increase in reports of the toxic effects of drugs and pollutants on the mitochondria in recent decades, interestingly correlating with an increase in insulin resistance prevalence. A variety of drug classes have been reported to potentially induce toxicity in the mitochondria leading to skeletal muscle, liver, central nervous system, and kidney injury. With the increase in diabetes prevalence and mitochondrial toxicity, it is therefore imperative to understand how mitochondrial toxicological agents can potentially compromise insulin sensitivity. This review article aims to explore and summarise the correlation between potential mitochondrial dysfunction caused by selected pharmacological agents and its effect on insulin signalling and glucose handling. Additionally, this review highlights the necessity for further studies aimed to understand drug-induced mitochondrial toxicity and the development of insulin resistance.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Charles Arineitwe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
- *Correspondence: Ntethelelo Sibiya,
| |
Collapse
|
26
|
Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S, Kakhlon O. Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol 2022; 10:1014798. [PMID: 36544904 PMCID: PMC9760697 DOI: 10.3389/fcell.2022.1014798] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.
Collapse
Affiliation(s)
- Avital Granit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kumudesh Mishra
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dinorah Barasch
- Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz-Yablonsky
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Dame Susan Garth Chair of Cancer Research, The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
28
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
29
|
Patel J, Berezowski I, Mazer-Amirshahi M, Frasure SE, Tran QK, Pourmand A. Valproic Acid Overdose: Case Report and Literature Review. J Emerg Med 2022; 63:651-655. [PMID: 36229318 DOI: 10.1016/j.jemermed.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Valproic acid (VPA) is a common antiepileptic drug that is also used routinely for various psychiatric disorders. VPA toxicity typically manifests as central nervous system depression, while hyperammonemic encephalopathy and hepatotoxicity are potentially life-threatening complications. CASE REPORT We describe the case of a 56-year-old man who presented to the emergency department after an intentional VPA overdose, was found to have hyperammonemia, and was treated with L-carnitine exclusively. He was subsequently admitted to the hospital for monitoring and serial laboratory testing. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although VPA toxicity has conventionally been managed by gastric decontamination, L-carnitine, and, in severe and refractory cases, extracorporeal removal, recent literature supports the use of carbapenem antibiotics, particularly meropenem. Thus, we report the details of current treatment modalities for VPA toxicity by reviewing current literature.
Collapse
Affiliation(s)
- Jigar Patel
- Department of Emergency Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Ivan Berezowski
- Department of Emergency Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington, District of Columbia
| | - Sarah E Frasure
- Department of Emergency Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Quincy K Tran
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Program in Trauma, The R. Adam Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ali Pourmand
- Department of Emergency Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
30
|
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Lab Invest 2022; 20:483. [PMID: 36273156 PMCID: PMC9588235 DOI: 10.1186/s12967-022-03693-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing challenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such treatment.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Zhihua Yun
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China. .,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| |
Collapse
|
31
|
Zheng P, Yu Z, Mo L, Zhang Y, Lyu C, Yu Y, Zhang J, Hao X, Wei H, Gao F, Li Y. An individualized medication model of sodium valproate for patients with bipolar disorder based on machine learning and deep learning techniques. Front Pharmacol 2022; 13:890221. [PMID: 36339624 PMCID: PMC9627622 DOI: 10.3389/fphar.2022.890221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
Valproic acid/sodium valproate (VPA) is a widely used anticonvulsant drug for maintenance treatment of bipolar disorders. In order to balance the efficacy and adverse events of VPA treatment, an individualized dose regimen is necessary. This study aimed to establish an individualized medication model of VPA for patients with bipolar disorder based on machine learning and deep learning techniques. The sequential forward selection (SFS) algorithm was applied for selecting a feature subset, and random forest was used for interpolating missing values. Then, we compared nine models using XGBoost, LightGBM, CatBoost, random forest, GBDT, SVM, logistic regression, ANN, and TabNet, and CatBoost was chosen to establish the individualized medication model with the best performance (accuracy = 0.85, AUC = 0.91, sensitivity = 0.85, and specificity = 0.83). Three important variables that correlated with VPA daily dose included VPA TDM value, antipsychotics, and indirect bilirubin. SHapley Additive exPlanations was applied to visually interpret their impacts on VPA daily dose. Last, the confusion matrix presented that predicting a daily dose of 0.5 g VPA had a precision of 55.56% and recall rate of 83.33%, and predicting a daily dose of 1 g VPA had a precision of 95.83% and a recall rate of 85.19%. In conclusion, the individualized medication model of VPA for patients with bipolar disorder based on CatBoost had a good prediction ability, which provides guidance for clinicians to propose the optimal medication regimen.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Zhang
- Zhongshan School of Medicine, SYSU, Guangzhou, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongsheng Yu
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd., Dalian, Liaoning, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Ainapure A, Kulkarni S, Gala F, Shah P, Gavali V. Mitochondrial Leukoencephalopathy in a One and Half-Year-old Boy. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1757195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA one and half-year-old baby boy presented with subacute regression of milestones in all domains. On examination, he had spastic dystonic quadriparesis. Reflexes were brisk. Magnetic resonance imaging of the brain showed diffuse cavitating leukodystrophy involving bilateral periventricular white matter, centrum semiovale, and corona radiata. Magnetic resonance spectroscopy revealed a lactate peak and serum lactate levels were also elevated. Genetic studies revealed compound heterozygous autosomal recessive mutations in IBA57 gene. This case illustrates a rare mitochondrial encephalopathy called multiple mitochondrial dysfunction syndrome-3 caused by a novel IBA57 gene mutation.
Collapse
Affiliation(s)
- Anish Ainapure
- Division of Paediatric Neurology, Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Shilpa Kulkarni
- Division of Paediatric Neurology, Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Foram Gala
- Division of Paediatric Neurology, Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Payal Shah
- Division of Paediatric Neurology, Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Vrushabh Gavali
- Division of Paediatric Neurology, Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| |
Collapse
|
33
|
Abbasnezhad A, Salami F, Mohebbati R. A review: Systematic research approach on toxicity model of liver and kidney in laboratory animals. Animal Model Exp Med 2022; 5:436-444. [PMID: 35918879 PMCID: PMC9610155 DOI: 10.1002/ame2.12230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic experiments are commonly performed on laboratory animals to investigate the possible mechanism(s) of action of toxic agents as well as drugs or substances under consideration. The use of toxins in laboratory animal models, including rats, is intended to cause toxicity. This study aimed to investigate different models of hepatotoxicity and nephrotoxicity in laboratory animals to help researchers advance their research goals. The current narrative review used databases such as Medline, Web of Science, Scopus, and Embase and appropriate keywords until June 2021. Nephrotoxicity and hepatotoxicity models derived from some toxic agents such as cisplatin, acetaminophen, doxorubicin, some anticancer drugs, and other materials through various signaling pathways are investigated. To understand the models of renal or hepatotoxicity in laboratory animals, we have provided a list of toxic agents and their toxicity procedures in this review.
Collapse
Affiliation(s)
- Abbasali Abbasnezhad
- Department of PhysiologyFaculty of Medicine, Gonabad University of Medical SciencesGonabadIran
| | - Fatemeh Salami
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Mohebbati
- Department of PhysiologyFaculty of Medicine, Gonabad University of Medical SciencesGonabadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
34
|
Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, Spaink HP, Palmblad M, van der Ven LTM, Pennings JLA. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology 2022; 477:153262. [PMID: 35868597 DOI: 10.1016/j.tox.2022.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.
Collapse
Affiliation(s)
- Marja Driessen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Marianne Roodbergen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
35
|
Evaluation of the hepatoprotective activity of hydroalcoholic extract of Alhagi camelorum against valproic acid-induced hepatotoxicity in rats. Biomed Pharmacother 2022; 150:112953. [PMID: 35430391 DOI: 10.1016/j.biopha.2022.112953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite many liver disorders, clinically useful drugs are scarce. Moreover, the available therapies are facing the challenges of efficacy and safety. Alhagi camelorum has been used in folk medicine globally for millennia to treat several ailments. Alhagi camelorum (Ac) is an old plant with a significant therapeutic value throughout Africa, Asia, and Latin America. Our goal was to determine the hepatoprotective activity of Alhagi camelorum against valproic acid induced hepatotoxicity using an animal model. EXPERIMENTAL APPROACH The animals were segregated in 4-groups (6 male rats each) weighing 250-290 g. Group-1 animals were treated with normal saline, Group-2 animals were treated with VPA at the dose of 500 mg/kg i.p for 14 days consecutively, while Group-3 and 4 were treated with valproic acid (VPA) at the dose of 500 mg/kg i.p for 14 days along with 400 mg/kg and 600 mg/kg of Ac hydroalcoholic extract respectively. Subsequently, blood serum samples and liver tissues were collected for biochemical and histopathological analysis. Phytochemical screening was carried out to screen for phytochemical classes and HPLC analysis was conducted to screen polyphenols. The antioxidant activity was carried by different assays such as DPPH, SOD, NO etc. KEY RESULTS: The administration of Ac showed hepatoprotection at the doses of 400 and 600 mg/kg. Ac significantly reduces the elevated serum levels of liver biomarkers compared to the valproic acid-induced hepatotoxic group. These findings were confirmed with histopathological changes where Ac was capable of reversing the toxic effects of valproic acid on liver cells CONCLUSION: It is concluded that Ac showed significant hepatoprotective effects at different doses in the animal model used in this study.
Collapse
|
36
|
Santos JX, Rasga C, Marques AR, Martiniano H, Asif M, Vilela J, Oliveira G, Sousa L, Nunes A, Vicente AM. A Role for Gene-Environment Interactions in Autism Spectrum Disorder Is Supported by Variants in Genes Regulating the Effects of Exposure to Xenobiotics. Front Neurosci 2022; 16:862315. [PMID: 35663546 PMCID: PMC9161282 DOI: 10.3389/fnins.2022.862315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Heritability estimates support the contribution of genetics and the environment to the etiology of Autism Spectrum Disorder (ASD), but a role for gene-environment interactions is insufficiently explored. Genes involved in detoxification pathways and physiological permeability barriers (e.g., blood-brain barrier, placenta and respiratory airways), which regulate the effects of exposure to xenobiotics during early stages of neurodevelopment when the immature brain is extremely vulnerable, may be particularly relevant in this context. Our objective was to identify genes involved in the regulation of xenobiotic detoxification or the function of physiological barriers (the XenoReg genes) presenting predicted damaging variants in subjects with ASD, and to understand their interaction patterns with ubiquitous xenobiotics previously implicated in this disorder. We defined a panel of 519 XenoReg genes through literature review and database queries. Large ASD datasets were inspected for in silico predicted damaging Single Nucleotide Variants (SNVs) (N = 2,674 subjects) or Copy Number Variants (CNVs) (N = 3,570 subjects) in XenoReg genes. We queried the Comparative Toxicogenomics Database (CTD) to identify interaction pairs between XenoReg genes and xenobiotics. The interrogation of ASD datasets for variants in the XenoReg gene panel identified 77 genes with high evidence for a role in ASD, according to pre-specified prioritization criteria. These include 47 genes encoding detoxification enzymes and 30 genes encoding proteins involved in physiological barrier function, among which 15 are previous reported candidates for ASD. The CTD query revealed 397 gene-environment interaction pairs between these XenoReg genes and 80% (48/60) of the analyzed xenobiotics. The top interacting genes and xenobiotics were, respectively, CYP1A2, ABCB1, ABCG2, GSTM1, and CYP2D6 and benzo-(a)-pyrene, valproic acid, bisphenol A, particulate matter, methylmercury, and perfluorinated compounds. Individuals carrying predicted damaging variants in high evidence XenoReg genes are likely to have less efficient detoxification systems or impaired physiological barriers. They can therefore be particularly susceptible to early life exposure to ubiquitous xenobiotics, which elicit neuropathological mechanisms in the immature brain, such as epigenetic changes, oxidative stress, neuroinflammation, hypoxic damage, and endocrine disruption. As exposure to environmental factors may be mitigated for individuals with risk variants, this work provides new perspectives to personalized prevention and health management policies for ASD.
Collapse
Affiliation(s)
- João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Nunes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Astrid M. Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- *Correspondence: Astrid M. Vicente,
| |
Collapse
|
37
|
Zang YN, Guo W, Dong F, Li AN, de Leon J, Ruan CJ. Published population pharmacokinetic models of valproic acid in adult patients: a systematic review and external validation in a Chinese sample of inpatients with bipolar disorder. Expert Rev Clin Pharmacol 2022; 15:621-635. [PMID: 35536685 DOI: 10.1080/17512433.2022.2075849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study reviewed all published valproic acid (VPA) population pharmacokinetic (PPK) models in adult patients and assessed them using external validation methods to determine predictive performance. METHODS Thirteen published PPK models (labeled with letters A to M) not restricted to children were identified in PubMed, Embase, and Web of Science databases. They were evaluated in a sample totaling 411 serum concentrations from 146 adult inpatients diagnosed with bipolar disorder in a Chinese hospital. Serum concentrations of VPA were analyzed by validated ultra-performance liquid chromatography-tandem mass spectrometry. Performance was assessed by 4 tests (prediction-based diagnostics, visual predictive checks, normalized prediction distribution error, and Bayesian forecasting). RESULTS Models K and L, developed in large samples of Chinese and Thai patients, showed good performance in our Chinese dataset. Models H and J demonstrated good performance in Tests 2 and 3 of the 4 tests, respectively. Another 7 models exhibited intermediate performance. The models with the worst performance, F and M, could not be improved by Bayesian forecasting. CONCLUSION In our validation study the most important factors contributing to good performance were absence of children, Asian ethnicity, one-compartment models and inclusion of body weight and VPA dose in previously published models.
Collapse
Affiliation(s)
- Yan-Nan Zang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Guo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - An-Ning Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital, 1350 Bull Lea Road, Lexington, KY 40511, USA.,Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apóstol Hospital, University of the Basque Country, Vitoria, Spain
| | - Can-Jun Ruan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
39
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
40
|
Reddy VB, Boteju L, Boteju A, Shen L, Kassahun K, Reddy N, Sheldon A, Luther S, Hu K. In Vitro and In Vivo Metabolism of a Novel Antimitochondrial Cancer Metabolism Agent, CPI-613, in Rat and Human. Drug Metab Dispos 2022; 50:361-373. [PMID: 35086846 DOI: 10.1124/dmd.121.000726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
CPI-613, an inhibitor of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) enzymes, is currently in development for the treatment of pancreatic cancer, acute myeloid leukemia, and other cancers. CPI-613 is an analog of lipoic acid, an essential cofactor for both PDH and KGDH. Metabolism and mass balance studies were conducted in rats after intravenous administration of [14C]-CPI-613. CPI-613 was eliminated via oxidative metabolism followed by excretion of the metabolites in feces (59%) and urine (22%). β-Oxidation was the major pathway of elimination for CPI-613. The most abundant circulating components in rat plasma were those derived from β-oxidation. In human hepatocytes, CPI-613 mainly underwent β-oxidation (M1), sulfur oxidation (M2), and glucuronidation (M3). The Michaelis-Menten kinetics (Vmax and Km) of the metabolism of CPI-613 to these three metabolites predicted the fraction metabolized leading to the formation of M1, M2, and M3 to be 38%, 6%, and 56%, respectively. In humans, after intravenous administration of CPI-613, major circulating species in plasma were the parent and the β-oxidation derived products. Thus, CPI-613 metabolites profiles in rat and human plasma were qualitatively similar. β-Oxidation characteristics and excretion patterns of CPI-613 are discussed in comparison with those reported for its endogenous counterpart, lipoic acid. SIGNIFICANCE STATEMENT: This work highlights the clearance mechanism of CPI-613 via β-oxidation, species differences in their ability to carry out β-oxidation, and subsequent elimination routes. Structural limitations for completion of terminal cycle of β-oxidation is discussed against the backdrop of its endogenous counterpart lipoic acid.
Collapse
Affiliation(s)
- Vijay Bhasker Reddy
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Lakmal Boteju
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Asela Boteju
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Li Shen
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Kelem Kassahun
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Nageshwar Reddy
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Adrian Sheldon
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Sanjeev Luther
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| | - Ke Hu
- Rafael Pharmaceuticals, Cranbury, New Jersey (V.B.R., L.B., A.B., N.R., S.L., K.H.); Frontage Laboratories, Exton, Pennsylvania (L.S., K.K.); and Charles River Laboratories, Worcester, Massachusetts (A.S.)
| |
Collapse
|
41
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
42
|
Steele JW, Lin YL, Chen N, Wlodarczyk BJ, Chen Q, Attarwala N, Venkatesalu M, Cabrera RM, Gross SS, Finnell RH. Embryonic Hypotaurine Levels Contribute to Strain-Dependent Susceptibility in Mouse Models of Valproate-Induced Neural Tube Defects. Front Cell Dev Biol 2022; 10:832492. [PMID: 35265619 PMCID: PMC8898900 DOI: 10.3389/fcell.2022.832492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 01/24/2023] Open
Abstract
Valproic acid (VPA, valproate, Depakote) is a commonly used anti-seizure medication (ASM) in the treatment of epilepsy and a variety of other neurological disorders. While VPA and other ASMs are efficacious for management of seizures, they also increase the risk for adverse pregnancy outcomes, including neural tube defects (NTDs). Thus, the utility of these drugs during pregnancy and in women of childbearing potential presents a continuing public health challenge. Elucidating the underlying genetic or metabolic risk factors for VPA-affected pregnancies may lead to development of non-teratogenic ASMs, novel prevention strategies, or more targeted methods for managing epileptic pregnancies. To address this challenge, we performed unbiased, whole embryo metabolomic screening of E8.5 mouse embryos from two inbred strains with differential susceptibility to VPA-induced NTDs. We identified metabolites of differential abundance between the two strains, both in response to VPA exposure and in the vehicle controls. Notable enriched pathways included lipid metabolism, carnitine metabolism, and several amino acid pathways, especially cysteine and methionine metabolism. There also was increased abundance of ω-oxidation products of VPA in the more NTD-sensitive strain, suggesting differential metabolism of the drug. Finally, we found significantly reduced levels of hypotaurine in the susceptible strain regardless of VPA status. Based on this information, we hypothesized that maternal supplementation with L-carnitine (400 mg/kg), coenzyme A (200 mg/kg), or hypotaurine (350 mg/kg) would reduce VPA-induced NTDs in the sensitive strain and found that administration of hypotaurine prior to VPA exposure significantly reduced the occurrence of NTDs by close to one-third compared to controls. L-carnitine and coenzyme A reduced resorption rates but did not significantly reduce NTD risk in the sensitive strain. These results suggest that genetic variants or environmental exposures influencing embryonic hypotaurine status may be factors in determining risk for adverse pregnancy outcomes when managing the health care needs of pregnant women exposed to VPA or other ASMs.
Collapse
Affiliation(s)
- John W. Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Nellie Chen
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Madhu Venkatesalu
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
43
|
Oxidative-stress and long-term hepatotoxicity: comparative study in Upcyte human hepatocytes and hepaRG cells. Arch Toxicol 2022; 96:1021-1037. [PMID: 35156134 DOI: 10.1007/s00204-022-03236-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions and a major cause of drug development failure and withdrawal. Although different molecular mechanisms are implicated in DILI, enhanced ROS levels have been described as a major mechanism. Human-derived cell models are increasingly used in preclinical safety assessment because they provide quick and relatively inexpensive information in early stages of drug development. We have analyzed and compared the phenotype and functionality of two liver cell models (Upcyte human hepatocytes and HepaRG cells) to demonstrate their suitability for long-term hepatotoxicity assessments and mechanistic studies. The transcriptomic and functional analysis revealed the maintenance of phase I and phase II enzymes, and antioxidant enzymes along time in culture, although the differences found between both test systems underlie the differential sensitivity to hepatotoxins. The evaluation of several mechanisms of cell toxicity, including oxidative stress, by high-content screening, demonstrated that, by combining the stable phenotype of liver cells and repeated-dose exposure regimes to 12 test compounds at clinically relevant concentrations, both Upcyte hepatocytes and HepaRG offer suitable properties to be used in routine screening assays for toxicological assessments during drug preclinical testing.
Collapse
|
44
|
Nguyen P, Chevillard L, Gouda AS, Gourlain H, Labat L, Malissin I, Deye N, Voicu S, Mégarbane B. L-carnitine does not improve valproic acid poisoning management: a cohort study with toxicokinetics and concentration/effect relationships. Ann Intensive Care 2022; 12:7. [PMID: 35092514 PMCID: PMC8800998 DOI: 10.1186/s13613-022-00984-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) poisoning is responsible for life-threatening neurological and metabolic impairments. Despite only low-level evidence of effectiveness, L-carnitine has been used for years to prevent or reverse VPA-related toxicity. We aimed to evaluate the effects of L-carnitine used to treat acute VPA poisoning on the time-course of plasma VPA concentrations and VPA-related toxicity. We designed a single-center cohort study including all VPA-poisoned patients admitted to the intensive care unit. We studied VPA toxicokinetics using a nonlinear mixed-effects model-based population approach and modeled individual plasma VPA/blood lactate concentration relationships. Then, we evaluated L-carnitine-attributed effects by comparing VPA elimination half-lives and time-courses of blood lactate levels and organ dysfunction [assessed by the Sequential Organ Failure Assessment (SOFA) score] between matched L-carnitine-treated and non-treated patients using a multivariate analysis including a propensity score. RESULTS Sixty-nine VPA-poisoned patients (40F/29 M; age, 41 years [32-47]) (median [25th-75th percentiles]; SOFA score, 4 [1-6]) were included. The presumed VPA ingested dose was 15 g [10-32]. Plasma VPA concentration on admission was 231 mg/L [147-415]. The most common manifestations were coma (70%), hyperlactatemia (3.9 mmol/L [2.7-4.9]) and hyperammonemia (127 mmol/L [92-159]). VPA toxicokinetics well fitted a one-compartment linear model with a mean elimination half-life of 22.9 h (coefficient of variation, 28.1%). Plasma VPA (C)/blood lactate concentration (E) relationships were well described by an exponential growth equation [[Formula: see text]; with baseline E0 = 1.3 mmol/L (43.9%) and rate constant of the effect, k = 0.003 L/mg (59.5%)]. Based on a multivariate analysis, peak blood lactate concentration was the only factor independently associated with L-carnitine administration (odds ratio, 1.9, 95% confidence interval, 1.2-2.8; P = 0.004). We found no significant contribution of L-carnitine to enhancing VPA elimination, accelerating blood lactate level normalization and/or preventing organ dysfunction. CONCLUSIONS VPA poisoning results in severe toxicity. While L-carnitine does not contribute to enhancing VPA clearance, its impact on accelerating blood lactate level normalization and/or preventing organ dysfunction remains uncertain. Investigating VPA toxicokinetics and concentration/effect relationships may help understanding how to improve VPA-poisoned patient management.
Collapse
Affiliation(s)
- Philippe Nguyen
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France
| | | | - Ahmed S Gouda
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hervé Gourlain
- Laboratory of Toxicology, Lariboisière Hospital, Paris, France
| | - Laurence Labat
- Laboratory of Toxicology, Lariboisière Hospital, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France
- University of Paris, Inserm UMRS-1144, Paris, France
| | - Nicolas Deye
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Sebastian Voicu
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France
- University of Paris, Inserm UMRS-1144, Paris, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Federation of Toxicology APHP, Lariboisière Hospital, 2 Rue Ambroise Paré, 75010, Paris, France.
- University of Paris, Inserm UMRS-1144, Paris, France.
| |
Collapse
|
45
|
Lai W, Du D, Chen L. Metabolomics Provides Novel Insights into Epilepsy Diagnosis and Treatment: A Review. Neurochem Res 2022; 47:844-859. [PMID: 35067830 DOI: 10.1007/s11064-021-03510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system. The diagnosis of epilepsy mainly depends on electroencephalograms and symptomatology, while diagnostic biofluid markers are still lacking. In addition, approximately 30% of patients with epilepsy (PWE) show a poor response to the currently available anti-seizure medicines. An increasing number of studies have reported alterations in the blood, brain tissue, cerebrospinal fluid and urine metabolome in PWE and animal models of epilepsy. The aim of this review was to identify potential metabolic biomarkers and pathways that might facilitate diagnostic, therapeutic and prognostic determination in PWE and the understanding of the pathogenesis of the disease. The PubMed and Embase databases were searched for metabolomic studies of PWE and epileptic models published before December 2020. The study objectives, types of models and reported differentially altered metabolites were examined and compared. Pathway analyses were performed using MetaboAnalyst 5.0 online software. Thirty-five studies were included in this review. Metabolites such as glutamate, lactate and citrate were disturbed in both PWE and epileptic models, which might be potential biomarkers of epilepsy. Metabolic pathways including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; glycerophospholipid metabolism; glyoxylate and dicarboxylate metabolism; and arginine and proline metabolism were involved in epilepsy. These pathways might play important roles in the pathogenesis of the disease. This review summarizes metabolites and metabolic pathways related to epilepsy and provides a novel perspective for the identification of potential biomarkers and therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, Advanced Mass Spectrometry Centre, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
46
|
Juneja A, Anand KS. Cerebellar Ataxia in Epilepsy Patient with Normal Serum Phenytoin Levels? Suspect Hyperammonemia. Neurol India 2022; 69:1869. [PMID: 34979716 DOI: 10.4103/0028-3886.333518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Juknevičienė M, Balnytė I, Valančiūtė A, Stanevičiūtė J, Sužiedėlis K, Stakišaitis D. The effect of valproic acid on SLC5A8 expression in gonad-intact and gonadectomized rat thymocytes. Int J Immunopathol Pharmacol 2022; 36:20587384211051954. [PMID: 35120418 PMCID: PMC8819739 DOI: 10.1177/20587384211051954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) pharmacological mechanisms are related to the anti-inflammatory and anti-viral effects. VPA is a histone deacetylases inhibitor and serves a role in its immunomodulatory impacts. VPA has complex effects on immune cell's mitochondrial metabolism. The SLC5A8 transporter of short fatty acids has an active role in regulating mitochondrial metabolism. The study aimed to investigate whether SLC5A8 expresses the sex-related difference and how SLC5A8 expression depends on gonadal hormones, VPA treatment, and NKCC1 expression in rat thymocytes. METHODS Control groups and VPA-treated gonad-intact and gonadectomized Wistar male and female rats were investigated (n = 6 in a group). The VPA 300 mg/kg/day in drinking water was given for 4 weeks. The SLC5A8 (Slc5a8 gene) and NKCC1 (Slc12a2 gene) RNA expressions were determined by the RT-PCR method. RESULTS The higher Slc5a8 expression was found in the gonad-intact males than respective females (p = 0.004). VPA treatment decreased the Slc5a8 expression in gonad-intact and castrated males (p = 0.02 and p = 0.03, respectively), and increased in gonad-intact female rats compared to their control (p = 0.03). No significant difference in the Slc5a8 expression between the ovariectomized female control and VPA-treated females was determined (p > 0.05). VPA treatment alters the correlation between Slc5a8 and Slc12a2 gene expression in thymocytes of gonad-intact rats. CONCLUSION VPA effect on the Slc5a8 expression in rat thymocytes is gender- and gonadal hormone-dependent.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Jūratė Stanevičiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| |
Collapse
|
48
|
Hala D, Petersen LH, Huggett DB, Puchowicz MA, Brunengraber H, Zhang GF. Overcompensation of CoA Trapping by Di(2-ethylhexyl) Phthalate (DEHP) Metabolites in Livers of Wistar Rats. Int J Mol Sci 2021; 22:ijms222413489. [PMID: 34948286 PMCID: PMC8709406 DOI: 10.3390/ijms222413489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in various industrial and household plastic products, ensuring widespread human exposures. Its routine detection in human bio-fluids and the propensity of its monoester metabolite to activate peroxisome proliferator activated receptor-α (PPARα) and perturb lipid metabolism implicate it as a metabolic disrupter. In this study we evaluated the effects of DEHP exposure on hepatic levels of free CoA and various CoA esters, while also confirming the metabolic activation to CoA esters and partial β-oxidation of a DEHP metabolite (2-ethyhexanol). Male Wistar rats were exposed via diet to 2% (w/w) DEHP for fourteen-days, following which hepatic levels of free CoA and various CoA esters were identified using liquid chromatography-mass spectrometry. DEHP exposed rats showed significantly elevated free CoA and increased levels of physiological, DEHP-derived and unidentified CoA esters. The physiological CoA ester of malonyl-CoA and DEHP-derived CoA ester of 3-keto-2-ethylhexanoyl-CoA were the most highly elevated, at eighteen- and ninety eight-times respectively. We also detected sixteen unidentified CoA esters which may be derivative of DEHP metabolism or induction of other intermediary metabolism metabolites. Our results demonstrate that DEHP is a metabolic disrupter which affects production and sequestration of CoA, an essential cofactor of oxidative and biosynthetic reactions.
Collapse
Affiliation(s)
- David Hala
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Department of Marine Biology, Texas A&M at Galveston, Galveston, TX 77554, USA
- Correspondence: ; Tel.: +1-409-740-4535
| | - Lene H. Petersen
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Department of Marine Biology, Texas A&M at Galveston, Galveston, TX 77554, USA
| | - Duane B. Huggett
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Boehringer Ingelheim Animal Health, Athens, GA 30601, USA
| | - Michelle A. Puchowicz
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; (M.A.P.); (H.B.)
- Department of Pediatrics, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; (M.A.P.); (H.B.)
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27705, USA;
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
49
|
Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell Mol Life Sci 2021; 78:7451-7468. [PMID: 34718827 PMCID: PMC11072406 DOI: 10.1007/s00018-021-03996-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete β-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.
Collapse
Affiliation(s)
- I F Duarte
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - J Caio
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F Moedas
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L A Rodrigues
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - A P Leandro
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - I A Rivera
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F B Silva
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
50
|
Moreno-Torres M, García-Llorens G, Moro E, Méndez R, Quintás G, Castell JV. Factors that influence the quality of metabolomics data in in vitro cell toxicity studies: a systematic survey. Sci Rep 2021; 11:22119. [PMID: 34764412 PMCID: PMC8586040 DOI: 10.1038/s41598-021-01652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023] Open
Abstract
REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is a global strategy and regulation policy of the EU that aims to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. It entered into force on 1st June 2007 (EC 1907/2006). REACH and EU policies plead for the use of robust high-throughput "omic" techniques for the in vitro investigation of the toxicity of chemicals that can provide an estimation of their hazards as well as information regarding the underlying mechanisms of toxicity. In agreement with the 3R's principles, cultured cells are nowadays widely used for this purpose, where metabolomics can provide a real-time picture of the metabolic effects caused by exposure of cells to xenobiotics, enabling the estimations about their toxicological hazards. High quality and robust metabolomics data sets are essential for precise and accurate hazard predictions. Currently, the acquisition of consistent and representative metabolomic data is hampered by experimental drawbacks that hinder reproducibility and difficult robust hazard interpretation. Using the differentiated human liver HepG2 cells as model system, and incubating with hepatotoxic (acetaminophen and valproic acid) and non-hepatotoxic compounds (citric acid), we evaluated in-depth the impact of several key experimental factors (namely, cell passage, processing day and storage time, and compound treatment) and instrumental factors (batch effect) on the outcome of an UPLC-MS metabolomic analysis data set. Results showed that processing day and storage time had a significant impact on the retrieved cell's metabolome, while the effect of cell passage was minor. Meta-analysis of results from pathway analysis showed that batch effect corrections and quality control (QC) measures are critical to enable consistent and meaningful estimations of the effects caused by compounds on cells. The quantitative analysis of the changes in metabolic pathways upon bioactive compound treatment remained consistent despite the concurrent causes of metabolomic data variation. Thus, upon appropriate data retrieval and correction and by an innovative metabolic pathway analysis, the metabolic alteration predictions remained conclusive despite the acknowledged sources of variability.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Guillem García-Llorens
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Erika Moro
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Rebeca Méndez
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, LEITAT Technological Center, Barcelona, Spain.
- Unidad Analítica, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - José Vicente Castell
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| |
Collapse
|