1
|
Cardoso-dos-Santos AC, Reales G, Schuler-Faccini L. Clusters of rare disorders and congenital anomalies in South America. Rev Panam Salud Publica 2023; 47:e98. [PMID: 37363626 PMCID: PMC10289474 DOI: 10.26633/rpsp.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/21/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To map geographic clusters of rare disorders and congenital anomalies reported in South America. Methods Qualitative systematic review conducted in Medline/PubMed, Lilacs, and Scielo electronic databases to identify studies meeting eligibility criteria. The strategy resulted in 1 672 unique articles, from which 164 were selected for full reading by a pair of reviewers. Results Fifty-five articles reported at least one cluster of genetic disorders or congenital anomalies in South American territory. From these papers, 122 clusters were identified, of which half (61) were related to autosomal recessive disorders. Sixty-five (53.3%) of the clusters were located in Brazil. Conclusions The results of the review reinforce that rare diseases and congenital anomalies can occur in a non-random way in space, which is discussed in the perspective of the complex history of formation, social organization, and genetic structure of the South American population. Mapping clusters in population medical genetics can be an important public health tool, given that such places concentrate cases of rare diseases that frequently require multiprofessional, specialized care. Therefore, these results can support important agendas in public health related to rare diseases and congenital anomalies, such as health promotion and surveillance.
Collapse
Affiliation(s)
- Augusto César Cardoso-dos-Santos
- Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional (INaGeMP)Porto Alegre, RSBrazilInstituto Nacional de Ciência e Tecnologia de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Universidade Federal do Rio Grande do SulPorto Alegre, RSBrazilUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lavinia Schuler-Faccini
- Universidade Federal do Rio Grande do SulPorto Alegre, RSBrazilUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Arias S, Paradisi I, Hernández A, Kanzler D. Undescribed GJB2 c.35dupG homozygous prelingual distinguished from c.35delG homozygous/compound heterozygous deafs, dwelling a German ancestry Venezuelan isolate. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Among ten hearing-impaired (HI) families mostly of German descent dwelling the Venezuelan isolate Colonia Tovar, which were initially studied several decades ago to assess the etiology of their profound/prelingual nonsyndromic deafness phenotype, an undescribed genotype/phenotype was found. Forty-eight subjects, including 8 of the still living 143 originally searched with audiograms 4 decades ago, were retested and their DNA collected. A genomic search of 27 loci involved in HI was performed on a randomly chosen prelingual deaf patient. Subsequently, GJB2 sequencing was performed in all subjects from each pedigree. Haplotypes were constructed with five intragenic GJB2 SNPs (rs117685390, rs7994748, rs2274084, rs2274083, and rs3751385). Audiograms performed along 5 decades were compared to evaluate age-related hearing loss in the different genotypes found in the population.
Results
Three prelingual deaf siblings, having the highest recorded symmetrical hearing loss of all the known affected in the isolate, carried the very rare mutation c.35dupG (p.V13Cfs*35) at GJB2 in a homozygous condition. Two additional GJB2 mutations were identified (p.W77R and c.35delG) in the isolate. Allelic disequilibrium in both c.35dupG and p.W77R carriers (with in-phase haplotype T;T;G;A;C) were found, although not so in the 2 other found c.35delG independent haplotypes. A compound heterozygote in trans (c.35delG/c.35dupG) was audiometrically distinguishable from both the c.35dupG and c.35delG homozygotes.
Conclusions
A relatively higher frequency of mutation of c.35dupG found than elsewhere was retrospectively inferred for the ancient population of the Kaiserstuhl region in Germany, having an opposite epidemiological situation to the one found with the contiguous and very frequent c.35delG. Haplotype analysis suggests founder phenomena and independent occurrence, hundreds of generations back in Caucasoid populations for both mutations.
Collapse
|
3
|
Di Pierro E, De Canio M, Mercadante R, Savino M, Granata F, Tavazzi D, Nicolli AM, Trevisan A, Marchini S, Fustinoni S. Laboratory Diagnosis of Porphyria. Diagnostics (Basel) 2021; 11:diagnostics11081343. [PMID: 34441276 PMCID: PMC8391404 DOI: 10.3390/diagnostics11081343] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Porphyrias are a group of diseases that are clinically and genetically heterogeneous and originate mostly from inherited dysfunctions of specific enzymes involved in heme biosynthesis. Such dysfunctions result in the excessive production and excretion of the intermediates of the heme biosynthesis pathway in the blood, urine, or feces, and these intermediates are responsible for specific clinical presentations. Porphyrias continue to be underdiagnosed, although laboratory diagnosis based on the measurement of metabolites could be utilized to support clinical suspicion in all symptomatic patients. Moreover, the measurement of enzymatic activities along with a molecular analysis may confirm the diagnosis and are, therefore, crucial for identifying pre-symptomatic carriers. The present review provides an overview of the laboratory assays used most commonly for establishing the diagnosis of porphyria. This would assist the clinicians in prescribing appropriate diagnostic testing and interpreting the testing results.
Collapse
Affiliation(s)
- Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Correspondence: ; Tel.: +39-0255036155
| | - Michele De Canio
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Rosa Mercadante
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
| | - Maria Savino
- Servizio di Medicina Trasfusionale e Laboratorio Analisi, Laboratorio di Immunogenetica, IRCCS Ospedale “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Francesca Granata
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Dario Tavazzi
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
| | - Anna Maria Nicolli
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università Degli Studi di Padova, 35121 Padova, Italy; (A.M.N.); (A.T.)
| | - Andrea Trevisan
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università Degli Studi di Padova, 35121 Padova, Italy; (A.M.N.); (A.T.)
| | - Stefano Marchini
- Laboratorio Malattie Rare-Settore Porfirie, Dipartimento di Scienze Mediche, Chirurgiche, Materno-Infantili e Dell’Adulto, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy;
| | - Silvia Fustinoni
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
4
|
Gómez G, Arias S, Cárdenas L, Zoghbi D, Paradisi I. GBA mutations in Gaucher type I Venezuelan patients: ethnic origins and frequencies. J Genet 2017; 96:583-589. [DOI: 10.1007/s12041-017-0821-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Payne DA, Baluchova K, Peoc'h KH, van Schaik RHN, Chan KCA, Maekawa M, Mamotte C, Russomando G, Rousseau F, Ahmad-Nejad P. Pre-examination factors affecting molecular diagnostic test results and interpretation: A case-based approach. Clin Chim Acta 2016; 467:59-69. [PMID: 27321365 DOI: 10.1016/j.cca.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. METHODS The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. CONCLUSIONS The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics.
Collapse
Affiliation(s)
- Deborah A Payne
- Molecular Services, APP-UniPath LLC, American Pathology Partners-UniPath, 6116 East Warren Ave., Denver, CO, USA.
| | - Katarina Baluchova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, Division of Oncology, Mala Hora 4C, 036 01 Martin, Slovakia; Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Molecular Biology, Mala Hora 4C, 036 01 Martin, Slovakia
| | - Katell H Peoc'h
- AP-HP Hôpital Beaujon, Service de Biochimie clinique, Clichy F-92118, France; Université Paris Diderot, UFR de Médecine site Bichat, INSERM UMRs-1149, Paris, France
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K C Allen Chan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University, Perth, Australia
| | - Graciela Russomando
- Molecular Biology and Biotechnology Department, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - François Rousseau
- Department of Medical Biology, Direction médicale des services hospitaliers, CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Centre for Clinical and Translational Research (CCTR), HELIOS Hospital, Heusnerstraße 40, 42283 Wuppertal, Witten/Herdecke University, Germany
| |
Collapse
|
6
|
Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J Hum Genet 2015; 61:215-22. [DOI: 10.1038/jhg.2015.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022]
|
7
|
Paradisi I, De Freitas L, Arias S. Most frequent mutation c.3402delC (p.Ala1135GlnfsX13) among Wilson disease patients in Venezuela has a wide distribution and two old origins. Eur J Med Genet 2014; 58:59-65. [PMID: 25497208 DOI: 10.1016/j.ejmg.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 12/04/2014] [Indexed: 01/09/2023]
Abstract
Wilson disease is an infrequent autosomal recessive disorder caused by mutations in the ATP7B gene (13q14.3) producing pathologic phenotypes due to copper accumulation in critical tissues. The aim of the research was to probe Wilson disease genetic epidemiology in Venezuela, through the identification in diagnosed index cases, of ATP7B locus mutations, their geographic distribution, frequency, in-phase haplotypes and probable ethnic ancestry. During the last three decades 33 independent Wilson disease families from the country at large were ascertained and diagnosed through severely reduced ceruloplasmin activity, higher urinary copper excretion, and specific clinical signs. Molecular studies of the ATP7B gene were accomplished in 26 of the families. Disease prevalence was estimated as 1:94,000 families between 1985 and 2013, showing geographic aggregation in the state of Zulia with 1:27,000 families in it. DNA analysis in 26 families revealed 13 different mutations. The c.3402delC was the most frequent one (26.9%), presenting two independent in-phase haplotypes, both of likely European descent; which is followed by the not previously reported p.G691V (9.6%) and by the frequent European H1069Q (7.7%). Known mutations c.51 + 4A > T, c.1285 + 5G > T, M645R, T788I, V845SfsX28, T977M, L1088X, T1220M, R1319X and a novel P767L showed frequencies between 5.8 and 1.9%. Despite the ample mutation heterogeneity for Wilson disease in the country, the findings provide a diagnostic algorithm to ease mutation assessment in new patients; the predominant c.3402delC displayed wide geographic distribution and two genetic origins.
Collapse
Affiliation(s)
- Irene Paradisi
- Laboratorio de Genética Humana, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| | - Laura De Freitas
- Laboratorio de Genética Humana, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; Departamento de Ciencias Fisiológicas, Laboratorio de Genética Molecular, Universidad de Carabobo (UC), Valencia, Venezuela
| | - Sergio Arias
- Laboratorio de Genética Humana, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| |
Collapse
|
8
|
Abstract
Acute intermittent porphyria (AIP), variegate porphyria (VP), and hereditary coproporphyria (HCP) are caused by mutations in the hydroxymethylbilane synthase (HMBS), protoporphyrinogen oxidase (PPOX), and coproporphyrinogen oxidase (CPOX) genes, respectively. This study aimed to identify mutations in seven Bulgarian families with AIP, six with VP, and one with HCP. A total of 33 subjects, both symptomatic (n = 21) and asymptomatic (n = 12), were included in this study. The identification of mutations was performed by direct sequencing of all the coding exons of the corresponding enzymes in the probands. The available relatives were screened for the possible mutations. A total of six different mutations in HMBS were detected in all seven families with AIP, three of which were previously described: c.76C>T [p.R26C] in exon 3, c.287C>T [p.S96F] in exon 7, and c.445C>T [p.R149X] in exon 9. The following three novel HMBS mutations were found: c.345-2A>C in intron 7-8, c.279-280insAT in exon 7, and c.887delC in exon 15. A total of three different novel mutations were identified in the PPOX gene in the VP families: c.441-442delCA in exon 5, c.917T>C [p.L306P] in exon 9, and c.1252T>C [p.C418R] in exon 12. A novel nonsense mutation, c.364G>T [p.E122X], in exon 1 of the CPOX gene was identified in the HCP family. This study, which identified mutations in Bulgarian families with AHP for the first time, established seven novel mutation sites. Seven latent carriers were also diagnosed and, therefore, were able to receive crucial counseling to prevent attacks.
Collapse
|
9
|
Acute intermittent porphyria associated with respiratory failure: a multidisciplinary approach. Crit Care Res Pract 2011; 2011:283690. [PMID: 21687623 PMCID: PMC3113262 DOI: 10.1155/2011/283690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/07/2011] [Accepted: 03/16/2011] [Indexed: 01/10/2023] Open
Abstract
Despite being challenging, delivery of effective nursing care to patients with acute intermittent porphyria is a matter of utmost importance. In this paper, the diversity of symptoms and the difficult diagnosis of this condition are emphasized, and details concerning the treatment of this disorder in the intensive care unit are presented. We believe that acute intermittent porphyria should be borne in mind during performance of differential diagnosis of neurological, psychiatric, and gastroenterological disorders on patients whose routine investigation tests are normal, especially when precipitating factors exist. Intensive care measures and a multidisciplinary team approach are essential.
Collapse
|