1
|
Sriwattanapong K, Rojnueangnit K, Theerapanon T, Srichomthong C, Porntaveetus T, Shotelersuk V. Compound Heterozygosity for a Novel Frameshift Variant Causing Fatal Infantile Liver Failure and Genotype-Phenotype Correlation of POLG c.3286C>T Variant. Int J Neonatal Screen 2021; 7:ijns7010009. [PMID: 33562887 PMCID: PMC7930966 DOI: 10.3390/ijns7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
A variant in the POLG gene is the leading cause of a heterogeneous group of mitochondrial disorders. No definitive treatment is currently available. Prenatal and newborn screening have the potential to improve clinical outcome of patients affected with POLG-related disorders. We reported a 4-month-old infant who presented with developmental delay, fever, and diarrhea. Within two weeks after hospital admission, the patient developed hepatic failure and died. Liver necropsy demonstrated an extensive loss of hepatocytes and bile duct proliferations. Trio-whole exome sequencing identified that the patient was compound heterozygous for a novel frameshift variant c.3102delG (p.Lys1035Serfs*59) and a common variant c.3286C>T (p.Arg1096Cys) in POLG (NM_002693.3) inherited from the mother and father, respectively. The c.3102delG (p.Lys1035Serfs*59) was a null variant and classified as pathogenic according to the American College of Medical Genetics and Genomics Standards and Guidelines. Prenatal genetic screenings using rapid whole exome sequencing successfully detected the heterozygous c.3286C>T variant in the following pregnancy and the normal alleles in the other one. Both children had been healthy. We reviewed all 34 cases identified with the POLG c.3286C>T variant and found that all 15 compound heterozygous cases had two missense variants except our patient who had the truncating variant and showed the earliest disease onset, rapid deterioration, and the youngest death. All homozygous cases had disease onset before age 2 and developed seizure. Here, we report a novel POLG variant expanding the genotypic spectrum, demonstrate the successful use of exome sequencing for prenatal and neonatal screenings of POLG-related disorders, and show the genotype-phenotype correlation of the common c.3286C>T variant.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Kitiwan Rojnueangnit
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
- Correspondence: ; Tel.: +66-02218-8695
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG)
gene: A clinical and molecular genetic review. Epilepsia 2016; 57:1531-1545. [DOI: 10.1111/epi.13508] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Maria-Eleni Anagnostou
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
3
|
Abstract
Alpers-Huttenlocher syndrome is an uncommon mitochondrial disease most often associated with mutations in the mitochondrial DNA replicase, polymerase-γ. Alterations in enzyme activity result in reduced levels or deletions in mitochondrial DNA. Phenotypic manifestations occur when the functional content of mitochondrial DNA reaches a critical nadir. The tempo of disease progression and onset varies among patients, even in identical genotypes. The classic clinical triad of seizures, liver degeneration, and progressive developmental regression helps define the disorder, but a wide range of clinical expression occurs. The majority of patients are healthy before disease onset, and seizures herald the disorder in most patients. Seizures can rapidly progress to medical intractability, with frequent episodes of epilepsia partialis continua or status epilepticus. Liver involvement may precede or occur after seizure onset. Regardless, eventual liver failure is common. Both the tempo of disease progression and range of organ involvement vary from patient to patient, and are only partly explained by pathogenic effects of genetic mutations. Diagnosis involves the constellation of organ involvement, not the sequence of signs. This disorder is relentlessly progressive and ultimately fatal.
Collapse
|