1
|
Ficco L, Müller VI, Kaufmann JM, Schweinberger SR. Socio‐cognitive, expertise‐based and appearance‐based accounts of the other‐‘race’ effect in face perception: A label‐based systematic review of neuroimaging results. Br J Psychol 2022; 114 Suppl 1:45-69. [DOI: 10.1111/bjop.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Ficco
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
- Department of Linguistics and Cultural Evolution International Max Planck Research School for the Science of Human History Jena Germany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- Institute of Neuroscience und Medicine (INM‐7) Research Centre Jülich Jülich Germany
| | - Jürgen M. Kaufmann
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
| | - Stefan R. Schweinberger
- Department of General Psychology and Cognitive Neuroscience Friedrich Schiller University Jena Germany
- Department of Linguistics and Cultural Evolution International Max Planck Research School for the Science of Human History Jena Germany
| |
Collapse
|
2
|
Geuzebroek AC, Woutersen K, van den Berg AV. When You Do Not Get the Whole Picture: Scene Perception After Occipital Cortex Lesions. Front Neurosci 2021; 15:716273. [PMID: 34966253 PMCID: PMC8710569 DOI: 10.3389/fnins.2021.716273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Occipital cortex lesions (OCLs) typically result in visual field defects (VFDs) contralateral to the damage. VFDs are usually mapped with perimetry involving the detection of point targets. This, however, ignores the important role of integration of visual information across locations in many tasks of everyday life. Here, we ask whether standard perimetry can fully characterize the consequences of OCLs. We compare performance on a rapid scene discrimination task of OCL participants and healthy observers with simulated VFDs. While the healthy observers will only suffer the loss of part of the visual scene, the damage in the OCL participants may further compromise global visual processing. Methods: VFDs were mapped with Humphrey perimetry, and participants performed two rapid scene discrimination tasks. In healthy participants, the VFDs were simulated with hemi- and quadrant occlusions. Additionally, the GIST model, a computational model of scene recognition, was used to make individual predictions based on the VFDs. Results: The GIST model was able to predict the performance of controls regarding the effects of the local occlusion. Using the individual predictions of the GIST model, we can determine that the variability between the OCL participants is much larger than the extent of the VFD could account for. The OCL participants can further be categorized as performing worse, the same, or better as their VFD would predict. Conclusions: While in healthy observers the extent of the simulated occlusion accounts for their performance loss, the OCL participants' performance is not fully determined by the extent or shape of their VFD as measured with Humphrey perimetry. While some OCL participants are indeed only limited by the local occlusion of the scene, for others, the lesions compromised the visual network in a more global and disruptive way. Yet one outperformed a healthy observer, suggesting a possible adaptation to the VFD. Preliminary analysis of neuroimaging data suggests that damage to the lateral geniculate nucleus and corpus callosum might be associated with the larger disruption of rapid scene discrimination. We believe our approach offers a useful behavioral tool for investigating why similar VFDs can produce widely differing limitations in everyday life.
Collapse
Affiliation(s)
- Anna C. Geuzebroek
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University, Nijmegen, Netherlands
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Karlijn Woutersen
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| | - Albert V. van den Berg
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| |
Collapse
|
3
|
Sims JR, Chen AM, Sun Z, Deng W, Colwell NA, Colbert MK, Zhu J, Sainulabdeen A, Faiq MA, Bang JW, Chan KC. Role of Structural, Metabolic, and Functional MRI in Monitoring Visual System Impairment and Recovery. J Magn Reson Imaging 2021; 54:1706-1729. [PMID: 33009710 PMCID: PMC8099039 DOI: 10.1002/jmri.27367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The visual system, consisting of the eyes and the visual pathways of the brain, receives and interprets light from the environment so that we can perceive the world around us. A wide variety of disorders can affect human vision, ranging from ocular to neurologic to systemic in nature. While other noninvasive imaging techniques such as optical coherence tomography and ultrasound can image particular sections of the visual system, magnetic resonance imaging (MRI) offers high resolution without depth limitations. MRI also gives superior soft-tissue contrast throughout the entire pathway compared to computed tomography. By leveraging different imaging sequences, MRI is uniquely capable of unveiling the intricate processes of ocular anatomy, tissue physiology, and neurological function in the human visual system from the microscopic to macroscopic levels. In this review we discuss how structural, metabolic, and functional MRI can be used in the clinical assessment of normal and pathologic states in the anatomic structures of the visual system, including the eyes, optic nerves, optic chiasm, optic tracts, visual brain nuclei, optic radiations, and visual cortical areas. We detail a selection of recent clinical applications of MRI at each position along the visual pathways, including the evaluation of pathology, plasticity, and the potential for restoration, as well as its limitations and key areas of ongoing exploration. Our discussion of the current and future developments in MR ocular and neuroimaging highlights its potential impact on our ability to understand visual function in new detail and to improve our protection and treatment of anatomic structures that are integral to this fundamental sensory system. LEVEL OF EVIDENCE 3: TECHNICAL EFFICACY STAGE 3: .
Collapse
Affiliation(s)
- Jeffrey R. Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Anna M. Chen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Zhe Sun
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Nicole A. Colwell
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Max K. Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Jingyuan Zhu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anoop Sainulabdeen
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, New York, USA
| |
Collapse
|
4
|
Kovarski K, Caetta F, Mermillod M, Peyrin C, Perez C, Granjon L, Delorme R, Cartigny A, Zalla T, Chokron S. Emotional face recognition in autism and in cerebral visual impairments: In search for specificity. J Neuropsychol 2020; 15:235-252. [PMID: 32920927 DOI: 10.1111/jnp.12221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in the social domain, but also by hyper- and hypo-reactivity. Atypical visual behaviours and processing have often been observed. Nevertheless, several similar signs are also identified in other clinical conditions including cerebral visual impairments (CVI). In the present study, we investigated emotional face categorization in groups of children with ASD and CVI by comparing each group to typically developing individuals (TD) in two tasks. Stimuli were either non-filtered or filtered by low- and high-spatial frequencies (LSF and HSF). All participants completed the autism spectrum quotient score (AQ) and a complete neurovisual evaluation. The results show that while both clinical groups presented difficulties in the emotional face recognition tasks and atypical processing of filtered stimuli, they did not differ from one another. Additionally, autistic traits were observed in the CVI group and symmetrically, some visual disturbances were present in the ASD group as measured via the AQ score and a neurovisual evaluation, respectively. The present study suggests the relevance of comparing ASD to CVI by showing that emotional face categorization difficulties should not be solely considered as autism-specific but merit investigation for potential dysfunction of the visual processing neural network. These results are of interest in both clinical and research perspectives, indicating that systematic visual examination is warranted for individuals with ASD.
Collapse
Affiliation(s)
- Klara Kovarski
- Institut de Neuropsychologie, Neurovision et Neurocognition, Hôpital Fondation Rothschild, Paris, France.,Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France, Paris, France
| | - Florent Caetta
- Institut de Neuropsychologie, Neurovision et Neurocognition, Hôpital Fondation Rothschild, Paris, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Carole Peyrin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Céline Perez
- Institut de Neuropsychologie, Neurovision et Neurocognition, Hôpital Fondation Rothschild, Paris, France
| | - Lionel Granjon
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
| | - Ariane Cartigny
- Institut de Neuropsychologie, Neurovision et Neurocognition, Hôpital Fondation Rothschild, Paris, France.,Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France, Paris, France
| | - Tiziana Zalla
- Institut Jean Nicod, CNRS, Ecole Normale Supérieure, Paris, France
| | - Sylvie Chokron
- Institut de Neuropsychologie, Neurovision et Neurocognition, Hôpital Fondation Rothschild, Paris, France.,Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France, Paris, France
| |
Collapse
|
5
|
Sanchez-Lopez J, Savazzi S, Pedersini CA, Cardobi N, Marzi CA. Neural bases of unconscious orienting of attention in hemianopic patients: Hemispheric differences. Cortex 2020; 127:269-289. [PMID: 32251902 DOI: 10.1016/j.cortex.2020.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022]
Abstract
The aim of this research was to study the behavioral and neurophysiological correlates of visual attention orientation to unseen stimuli presented to the blind hemifield of hemianopic patients, and the existence of hemispheric differences for this kind of unconscious attention. Behaviorally, by using a Posner paradigm, we found a significant attention effect in speed of response to unseen stimuli similar to that observed in the sighted hemifield and in healthy participants for visible stimuli. Moreover, event-related potential (ERP) and oscillatory attention-related activity were present following stimulus presentation to the blind hemifield. Importantly, in patients this pattern of activity was different as a function of the side of the brain lesion: Left damaged patients showed attention-related ERP and oscillatory activity broadly similar to that found in healthy participants. In contrast, right damaged patients showed a radically different pattern. These data confirm and extend to neurophysiological mechanisms the existence of unconscious visual orienting and are in keeping with a right hemisphere dominance for both unconscious and conscious attention.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Silvia Savazzi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| | - Caterina A Pedersini
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Nicolò Cardobi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Carlo A Marzi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
6
|
Chokron S, Dubourg L, Garric C, Martinelli F, Perez C. Dissociations between perception and awareness in hemianopia. Restor Neurol Neurosci 2020; 38:189-201. [PMID: 31929128 DOI: 10.3233/rnn-190951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most common visual defect to follow a lesion of the retrochiasmal pathways is homonymous hemianopia (HH), whereby patients are blind to the contralesional visual field of each eye. Homonymous hemianopia has been studied in terms of its deleterious consequences on perceptual, cognitive and motor tasks as well as because it represents an interesting model of vision loss after a unilateral lesion of the occipital lobe. From a behavioral perspective, in addition to exhibiting a severe deficit in their contralesional visual field, HH patients can also exhibit dissociations between perception and awareness. Firstly, HH patients suffering from anosognosia may be unaware of their visual field defect. Secondly, HH patients can present with unconscious visual abilities in the blind hemifield, a phenomenon referred to as blindsight. Thirdly, recent reports demonstrate that HH patients can suffer from a subtle deficit in their ipsilesional visual field that they are unaware of, a condition called sightblindness (i.e. the reverse case of 'blindsight'). Finally, HH patients may also exhibit visual hallucinations in their blind field; however, such patients are not systematically aware that their perceptions are unreal. In this review, we provide an overview of the visual-field losses in HH patients after a left or right unilateral occipital lesion. Furthermore, we explore the implications of these four phenomena for models of visual processing and rehabilitation of visual field defects in HH patients. Finally, in contrast to the traditional view that HH is solely a visual-field defect, we discuss why this deficit is an interesting model for studying the dissociation between perception and awareness.
Collapse
Affiliation(s)
- Sylvie Chokron
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Lucas Dubourg
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Clémentine Garric
- Laboratoire de Sciences Cognitives et Affectives, SCALab, CNRS UMR, Faculté de Médecine, Pôle Recherche et Université de Lille, Lille, France
| | - Fiora Martinelli
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Céline Perez
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| |
Collapse
|
7
|
Chokron S, Peyrin C, Perez C. Ipsilesional deficit of selective attention in left homonymous hemianopia and left unilateral spatial neglect. Neuropsychologia 2019; 128:305-314. [DOI: 10.1016/j.neuropsychologia.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
|
8
|
Sanchez-Lopez J, Pedersini CA, Di Russo F, Cardobi N, Fonte C, Varalta V, Prior M, Smania N, Savazzi S, Marzi CA. Visually evoked responses from the blind field of hemianopic patients. Neuropsychologia 2019; 128:127-139. [PMID: 28987906 PMCID: PMC5845440 DOI: 10.1016/j.neuropsychologia.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Hemianopia is a visual field defect characterized by decreased vision or blindness in the contralesional visual field of both eyes. The presence of well documented above-chance unconscious behavioural responses to visual stimuli presented to the blind hemifield (blindsight) has stimulated a great deal of research on the neural basis of this important phenomenon. The present study is concerned with electrophysiological responses from the blind field. Since previous studies found that transient Visual Evoked Potentials (VEPs) are not entirely suitable for this purpose here we propose to use Steady-State VEPs (SSVEPs). A positive result would have important implications for the understanding of the neural bases of conscious vision. We carried out a passive SSVEP stimulation with healthy participants and hemianopic patients. Stimuli consisted of four black-and-white sinusoidal Gabor gratings presented one in each visual field quadrant and flickering one at a time at a 12Hz rate. To assess response reliability a Signal-to-Noise Ratio analysis was conducted together with further analyses in time and frequency domains to make comparisons between groups (healthy participants and patients), side of brain lesion (left and right) and visual fields (sighted and blind). The important overall result was that stimulus presentation to the blind hemifield yielded highly reliable responses with time and frequency features broadly similar to those found for cortical extrastriate areas in healthy controls. Moreover, in the intact hemifield of hemianopics and in healthy controls there was evidence of a role of prefrontal structures in perceptual awareness. Finally, the presence of different patterns of brain reorganization depended upon the side of lesion.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy.
| | - Caterina A Pedersini
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Francesco Di Russo
- Department. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicolò Cardobi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Valentina Varalta
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | | | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Silvia Savazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
9
|
Casco C, Barollo M, Contemori G, Battaglini L. Neural Restoration Training improves visual functions and expands visual field of patients with homonymous visual field defects. Restor Neurol Neurosci 2018. [PMID: 29526854 DOI: 10.3233/rnn-170752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In recent years, the introduction of visual rehabilitation for patients with homonymous visual field defects has been met with both enthusiasm and caution. Despite the evidence that restitutive training results in expansion of the visual field, several concerns have been raised. OBJECTIVE We tested the effectiveness of a new rehabilitative protocol called "Neuro Restoration Training" (NRT) in reducing visual field defects and in restituting visual functions in the restored hemianopic area. METHODS Ten patients with homonymous visual field defects (lesion age >6 months) where trained in detecting low contrast Gabor patches randomly presented in the blind field, which refers to regions of 0 dB sensitivity, and along the hemianopic boundary between absolute (0 dB) and partial blindness (>0 dB). Training included static, drifting, and flickering Gabors in different blocks. Positions along the hemianopic boundary were systematically shifted toward the blind field according to the threshold reduction during the training. Before and after the training, we assessed visual field expansion and improvement in different high-level transfer tasks (i.e., letter identification and shape recognition) performed in the hemianopic boundary and in the blind field. RESULTS NRT led to significant visual field enlargement (≈5 deg), as indicated by the conventional Humphrey perimetry, and two custom made evaluations of visual field expansion with eye movement control (one static and one dynamic). The restored area acquired new visual functions such as small letter recognition and perception of moving shapes. Finally, for some patients, NRT also improved detection, either aware or not, of high contrast flickering grating and recognition of geometrical shapes entirely presented within the blind field. CONCLUSION These results suggest that NRT may lead to visual field enlargement and translate into untrained visual functions.
Collapse
Affiliation(s)
- Clara Casco
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Michele Barollo
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Ajina S, Bridge H. Blindsight relies on a functional connection between hMT+ and the lateral geniculate nucleus, not the pulvinar. PLoS Biol 2018; 16:e2005769. [PMID: 30044775 PMCID: PMC6078309 DOI: 10.1371/journal.pbio.2005769] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/06/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
When the primary visual cortex (V1) is damaged, the principal visual pathway is lost, causing a loss of vision in the opposite visual field. While conscious vision is impaired, patients can still respond to certain images; this is known as 'blindsight'. Recently, a direct anatomical connection between the lateral geniculate nucleus (LGN) and human motion area hMT+ has been implicated in blindsight. However, a functional connection between these structures has not been demonstrated. We quantified functional MRI responses to motion in 14 patients with unilateral V1 damage (with and without blindsight). Patients with blindsight showed significant activity and a preserved sensitivity to speed in motion area hMT+, which was absent in patients without blindsight. We then compared functional connectivity between motion area hMT+ and a number of structures implicated in blindsight, including the ventral pulvinar. Only patients with blindsight showed an intact functional connection with the LGN but not the other structures, supporting a specific functional role for the LGN in blindsight.
Collapse
Affiliation(s)
- Sara Ajina
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Chokron S, Perez C, Peyrin C. Behavioral Consequences and Cortical Reorganization in Homonymous Hemianopia. Front Syst Neurosci 2016; 10:57. [PMID: 27445717 PMCID: PMC4923162 DOI: 10.3389/fnsys.2016.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
The most common visual defect to follow a lesion of the retrochiasmal pathways is homonymous hemianopia (HH), whereby, in each eye, patients are blind to the contralesional visual field. From a behavioral perspective, in addition to exhibiting a severe deficit in their contralesional visual field, hemianopic patients can also present implicit residual capacities, now usually referred to collectively as blindsight. It was recently demonstrated that HH patients can also suffer from a subtle deficit in their ipsilesional visual field, called sightblindness (the reverse case of blindsight). Furthermore, the nature of the visual deficit in the contralesional and ipsilesional visual fields, as well as the pattern of functional reorganization in the occipital lobe of HH patients after stroke, all appear to depend on the lesion side. In addition to their contralesional and ipsilesional visual deficits, and to their residual capacities, HH patients can also experience visual hallucinations in their blind field, the physiopathological mechanisms of which remain poorly understood. Herein we review blindsight in terms of its better-known aspects as well as its less-studied clinical signs such as sightblindness, hemispheric specialization and visual hallucinations. We also discuss the implications of recent experimental findings for rehabilitation of visual field defects in hemianopic patients.
Collapse
Affiliation(s)
- Sylvie Chokron
- Unité Fonctionnelle Vision and Cognition, Fondation Ophtalmologique RothschildParis, France; UMR 8242, Laboratoire de Psychologie de la Perception, CNRS and Université Paris-DescartesParis, France
| | - Céline Perez
- Unité Fonctionnelle Vision and Cognition, Fondation Ophtalmologique RothschildParis, France; UMR 8242, Laboratoire de Psychologie de la Perception, CNRS and Université Paris-DescartesParis, France
| | - Carole Peyrin
- UMR 5105, CNRS, Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes Grenoble, France
| |
Collapse
|
12
|
Abstract
When the human primary visual cortex (V1) is damaged, the dominant geniculo-striate pathway can no longer convey visual information to the occipital cortex. However, many patients with such damage retain some residual visual function that must rely on an alternative pathway directly to extrastriate occipital regions. This residual vision is most robust for moving stimuli, suggesting a role for motion area hMT+. However, residual vision also requires high-contrast stimuli, which is inconsistent with hMT+ sensitivity to contrast in which even low-contrast levels elicit near-maximal neural activation. We sought to investigate this discrepancy by measuring behavioral and neural responses to increasing contrast in patients with V1 damage. Eight patients underwent behavioral testing and functional magnetic resonance imaging to record contrast sensitivity in hMT+ of their damaged hemisphere, using Gabor stimuli with a spatial frequency of 1 cycle/°. The responses from hMT+ of the blind hemisphere were compared with hMT+ and V1 responses in the sighted hemisphere of patients and a group of age-matched controls. Unlike hMT+, neural responses in V1 tend to increase linearly with increasing contrast, likely reflecting a dominant parvocellular channel input. Across all patients, the responses in hMT+ of the blind hemisphere no longer showed early saturation but increased linearly with contrast. Given the spatiotemporal parameters used in this study and the known direct subcortical projections from the koniocellular layers of the lateral geniculate nucleus to hMT+, we propose that this altered contrast sensitivity in hMT+ could be consistent with input from the koniocellular pathway.
Collapse
|
13
|
Cavézian C, Perez C, Peyrin C, Gaudry I, Obadia M, Gout O, Chokron S. Hemisphere-dependent ipsilesional deficits in hemianopia: Sightblindness in the 'intact' visual field. Cortex 2015; 69:166-74. [PMID: 26073147 DOI: 10.1016/j.cortex.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/20/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES In addition to exhibiting a severe contralesional deficit, hemianopic patients may also show a subtle ipsilesional visual deficit, called sightblindness (the reverse case of 'blindsight). We have tested for the presence, nature and extent of such an ipsilesional visual field (IVF) deficit in hemianopic patients that we assigned to perform two visual tasks. Namely, we aimed to ascertain any links between this ipsilesional deficit, the lesion side, and the tasks performed or the stimuli used. METHODS We tested left and right homonymous hemianopic (right brain-damaged RBD and left brain-damaged LBD, respectively) patients and healthy controls. Natural-scene images, either non-filtered or filtered in low or high spatial frequency (LSF or HSF, respectively) were presented in the IVF of each subject. For the two tasks, detection ("Is an image present?") and categorization ("Is the image of a forest or a city?"), accuracy and response time were recorded. RESULTS In the IVF the RBD (left hemianopes) patients made more errors on the categorization task than did their matched controls, regardless of image type. In contrast, the only task in which the LBD (right hemianopes) patients made more errors than did the controls was the HSF-images task. Furthermore, in both tasks (detection and categorization), the RBD patients performed worse than did the LBD patients. DISCUSSION Homonymous hemianopic patients do indeed exhibit a specific visual deficit in their IVF, which was previously thought to be unaffected. We have demonstrated that the nature and severity of this ipsilesional deficit is determined by the side of the occipital lesion as well as by the tasks and the stimuli. Our findings corroborate the idea of hemispheric specialization at the occipital level, which might determine the nature and severity of ipsilesional deficits in hemianopic patients.
Collapse
Affiliation(s)
- Céline Cavézian
- Laboratoire Vision, Action, Cognition - EAU 01, Université Paris Descartes - Sorbonne Paris Cité, Boulogne-Billancourt, France
| | - Céline Perez
- Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France; Unité Vision et Cognition, Fondation Ophtalmologique Rothschild, Paris, France
| | | | - Isabelle Gaudry
- Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France; Unité Vision et Cognition, Fondation Ophtalmologique Rothschild, Paris, France
| | - Michaël Obadia
- Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Olivier Gout
- Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Sylvie Chokron
- Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France; Unité Vision et Cognition, Fondation Ophtalmologique Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France.
| |
Collapse
|
14
|
Coubard OA, Urbanski M, Bourlon C, Gaumet M. Educating the blind brain: a panorama of neural bases of vision and of training programs in organic neurovisual deficits. Front Integr Neurosci 2014; 8:89. [PMID: 25538575 PMCID: PMC4256986 DOI: 10.3389/fnint.2014.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/31/2014] [Indexed: 01/13/2023] Open
Abstract
Vision is a complex function, which is achieved by movements of the eyes to properly foveate targets at any location in 3D space and to continuously refresh neural information in the different visual pathways. The visual system involves five main routes originating in the retinas but varying in their destination within the brain: the occipital cortex, but also the superior colliculus (SC), the pretectum, the supra-chiasmatic nucleus, the nucleus of the optic tract and terminal dorsal, medial and lateral nuclei. Visual pathway architecture obeys systematization in sagittal and transversal planes so that visual information from left/right and upper/lower hemi-retinas, corresponding respectively to right/left and lower/upper visual fields, is processed ipsilaterally and ipsialtitudinally to hemi-retinas in left/right hemispheres and upper/lower fibers. Organic neurovisual deficits may occur at any level of this circuitry from the optic nerve to subcortical and cortical destinations, resulting in low or high-level visual deficits. In this didactic review article, we provide a panorama of the neural bases of eye movements and visual systems, and of related neurovisual deficits. Additionally, we briefly review the different schools of rehabilitation of organic neurovisual deficits, and show that whatever the emphasis is put on action or perception, benefits may be observed at both motor and perceptual levels. Given the extent of its neural bases in the brain, vision in its motor and perceptual aspects is also a useful tool to assess and modulate central nervous system (CNS) in general.
Collapse
Affiliation(s)
- Olivier A Coubard
- The Neuropsychological Laboratory, CNS-Fed Paris, France ; Laboratoire Psychologie de la Perception, UMR 8242 CNRS-Université Paris Descartes Paris, France
| | - Marika Urbanski
- Service de Médecine et de Réadaptation Gériatrique et Neurologique, Hôpitaux de Saint-Maurice Saint-Maurice, France ; Institut du Cerveau et de la Moelle Epinière (ICM), Sorbonne Universités, Université Pierre et Marie Curie UM 75, Inserm U 1127, CNRS UMR 7225 Paris, France
| | - Clémence Bourlon
- Service de Médecine et de Réadaptation, Clinique Les Trois Soleils Boissise-le-Roi, France
| | - Marie Gaumet
- The Neuropsychological Laboratory, CNS-Fed Paris, France
| |
Collapse
|
15
|
Perez C, Chokron S. Rehabilitation of homonymous hemianopia: insight into blindsight. Front Integr Neurosci 2014; 8:82. [PMID: 25374515 PMCID: PMC4206079 DOI: 10.3389/fnint.2014.00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022] Open
Abstract
Strong evidence of considerable plasticity in primary sensory areas in the adult cortex, and of dramatic cross-modal reorganization in visual areas, after short- or long-term visual deprivation has recently been reported. In the context of patient rehabilitation, this scientifically challenging topic takes on urgent clinical relevance, especially given the lack of information about the role of such reorganization on spared or newly emerged visual performance. Amongst the most common visual field defects found upon unilateral occipital damage of the primary visual cortex is homonymous hemianopia (HH), a perfectly symmetric loss of vision in both eyes. Traditionally, geniculostriate lesions were considered to result in complete and permanent visual loss in the topographically related area of the visual field (Huber, 1992). However, numerous studies in monkeys, and later, in humans, have demonstrated that despite destruction of the striate cortex, or even following a hemispherectomy, some patients retain a certain degree of unconscious visual function, known as blindsight. Accordingly, there have recently been attempts to restore visual function in patients by stimulating unconscious preserved blindsight capacities. Herein we review different visual rehabilitation techniques designed for brain-damaged patients with visual field loss. We discuss the hypothesis that explicit (conscious) visual detection can be restored in the blind visual field by harnessing implicit (unconscious) visual capacities. The results that we summarize here underline the need for early diagnosis of cortical visual impairment (CVI), and the urgency in rehabilitating such deficits, in these patients. Based on the research precedent, we explore the link between implicit (unconscious) vision and conscious perception and discuss possible mechanisms of adaptation and plasticity in the visual cortex.
Collapse
Affiliation(s)
- Céline Perez
- Neurology, Unité Fonctionnelle Vision et Cognition, Fondation Ophtalmologique Rothschild Paris, France
| | - Sylvie Chokron
- Neurology, Unité Fonctionnelle Vision et Cognition, Fondation Ophtalmologique Rothschild Paris, France ; Laboratoire de Psychologie de la Perception, Université Paris-Descartes, UMR 8242 CNRS Paris, France
| |
Collapse
|
16
|
Urbanski M, Coubard OA, Bourlon C. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques. Front Integr Neurosci 2014; 8:74. [PMID: 25324739 PMCID: PMC4179723 DOI: 10.3389/fnint.2014.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/03/2014] [Indexed: 01/04/2023] Open
Abstract
Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.
Collapse
Affiliation(s)
- Marika Urbanski
- Service de Médecine et de Réadaptation Gériatrique et Neurologique, Hôpitaux de Saint-Maurice Saint-Maurice, France ; Inserm, U 1127, ICM FrontLab Paris, France ; CNRS, UMR 7225, ICM FrontLab Paris, France ; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1127 Paris, France ; Institut du Cerveau et de la Moelle Épinière, ICM FrontLab Paris, France
| | - Olivier A Coubard
- The Neuropsychological Laboratory, CNS-Fed Paris, France ; Laboratoire Psychologie de la Perception, UMR 8242 CNRS-Université Paris Descartes Paris, France
| | - Clémence Bourlon
- Service de Médecine et de Réadaptation, Clinique Les Trois Soleils Boissise-le-Roi, France
| |
Collapse
|
17
|
|
18
|
Bola M, Gall C, Sabel BA. "Sightblind": perceptual deficits in the "intact" visual field. Front Neurol 2013; 4:80. [PMID: 23805126 PMCID: PMC3691518 DOI: 10.3389/fneur.2013.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
Unilateral visual cortex lesions caused by stroke or trauma lead to blindness in contralateral visual field - a condition called homonymous hemianopia. Although the visual field area processed by the uninjured hemisphere is thought to be "intact," it also exhibits marked perceptual deficits in contrast sensitivity, processing speed, and contour integration. Such patients are "sightblind" - their blindness reaches far beyond the primary scotoma. Studies showing perceptual deficits in patients' intact fields are reviewed and implications of these findings are discussed. It is concluded that consequences of partial blindness are greater than previously thought, since perceptual deficits in the "intact" field likely contribute to subjective vision loss in patients with visual field defect. This has important implications for vision diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Michał Bola
- Medical Faculty, Institute of Medical Psychology, Otto von Guericke University of Magdeburg Magdeburg, Germany
| | | | | |
Collapse
|
19
|
The second face of blindness: processing speed deficits in the intact visual field after pre- and post-chiasmatic lesions. PLoS One 2013; 8:e63700. [PMID: 23667657 PMCID: PMC3648511 DOI: 10.1371/journal.pone.0063700] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/09/2013] [Indexed: 01/25/2023] Open
Abstract
Purpose Damage along the visual pathway results in a visual field defect (scotoma), which retinotopically corresponds to the damaged neural tissue. Other parts of the visual field, processed by the uninjured tissue, are considered to be intact. However, perceptual deficits have been observed in the “intact” visual field, but these functional impairments are poorly understood. We now studied temporal processing deficits in the intact visual field of patients with either pre- or post-chiasmatic lesions to better understand the functional consequences of partial blindness. Methods Patients with pre- (n = 53) or post- chiasmatic lesions (n = 98) were tested with high resolution perimetry – a method used to map visual fields with supra-threshold light stimuli. Reaction time of detections in the intact visual field was then analyzed as an indicator of processing speed and correlated with features of the visual field defect. Results Patients from both groups exhibited processing speed deficits in their presumably “intact” field as indicated by comparison to a normative sample. Further, in both groups processing speed was found to be a function of two factors. Firstly, a spatially restricted (retinotopic) influence of the scotoma was seen in longer reaction times when stimuli were presented in intact field sectors close to the defect. Secondly, patients with larger scotomata had on average longer reaction times in their intact field indicating a more general (non-retinotopic) influence of the scotoma. Conclusions Processing speed deficits in the “intact” visual field of patients with visual system damage demonstrate that visual system lesions have more widespread consequences on perception than previously thought. Because dysfunctions of the seeing field are expected to contribute to subjective vision, including visual tests of the presumed “intact” field may help to better understand vision loss and to improve methods of vision restoration and rehabilitation.
Collapse
|