1
|
Ramm M, Sundermann B, Gomes CA, Möddel G, Langenbruch L, Nayyeri MD, Young P, Pfleiderer B, Krebs RM, Axmacher N. Probing the relevance of the hippocampus for conflict-induced memory improvement. Neuroimage 2020; 226:117563. [PMID: 33189928 PMCID: PMC7836234 DOI: 10.1016/j.neuroimage.2020.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/05/2022] Open
Abstract
The hippocampus plays a key role for episodic memory. In addition, a small but growing number of studies has shown that it also contributes to the resolution of response conflicts. It is less clear how these two functions are related, and how they are affected by hippocampal lesions in patients with mesial temporal lobe epilepsy (MTLE). Previous studies suggested that conflict stimuli might be better remembered, but whether the hippocampus is critical for supporting this interaction between conflict processing and memory formation is unknown. Here, we tested 19 patients with MTLE due to hippocampal sclerosis and 19 matched healthy controls. Participants performed a face-word Stroop task during functional magnetic resonance imaging (fMRI) followed by a recognition task for the faces. We tested whether memory performance and activity in brain regions implicated in long-term memory were modulated by conflict during encoding, and whether this differed between MTLE patients and controls. In controls, we largely replicated previous findings of improved memory for conflict stimuli. While MTLE patients showed response time slowing during conflict trials as well, they did not exhibit a memory benefit. In controls, neural activity of conflict resolution and memory encoding interacted within a hippocampal region of interest. Here, left hippocampal recruitment was less efficient for memory performance in incongruent trials than in congruent trials, suggesting an intrahippocampal competition for limited resources. They also showed an involvement of precuneus and posterior cingulate cortex during conflict resolution. Both effects were not observed in MTLE patients, where activation of the precuneus and posterior cingulate cortex instead predicted later memory. Further research is needed to find out whether our findings reflect widespread functional reorganization of the episodic memory network due to hippocampal dysfunction.
Collapse
Affiliation(s)
- Markus Ramm
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Benedikt Sundermann
- Institute of Clinical Radiology, Medical Faculty - University of Muenster - and University Hospital Muenster, Muenster, Germany; Institute of Radiology and Neuroradiology, University of Oldenburg, Evangelisches Krankenhaus, Medical Campus, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Carlos Alexandre Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Gabriel Möddel
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Mahboobeh Dehghan Nayyeri
- Institute of Clinical Radiology, Medical Faculty - University of Muenster - and University Hospital Muenster, Muenster, Germany; Department of Psychosomatic Medicine and Psychotherapy, LVR Clinic, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Young
- Department of Neurology, Medical Park Bad Feilnbach Reithofpark, Bad Feilnbach, Germany
| | - Bettina Pfleiderer
- Institute of Clinical Radiology, Medical Faculty - University of Muenster - and University Hospital Muenster, Muenster, Germany
| | - Ruth M Krebs
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
2
|
Temporal lobe spikes: EEG-fMRI contributions to the "mesial vs. lateral" debate. Clin Neurophysiol 2017; 128:986-991. [PMID: 28445839 DOI: 10.1016/j.clinph.2017.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE It has been reported that interictal epileptic discharges (IEDs) recorded in temporal regions on scalp EEG are unlikely to originate from mesial temporal structures. However, EEG-fMRI sometimes show mesial temporal activation. We hypothesized that BOLD activation in the temporal neocortex is weaker than in the mesial structures, reflecting the fact that propagated activity has less metabolic demand than the original discharge. METHODS Twelve patients with epilepsy who have BOLD response in mesial temporal structures were selected from our EEG-fMRI database. We searched the temporal lobe ipsilateral to IEDs and checked whether there is positive BOLD response in the neocortex. RESULTS All IED types showed a BOLD response in the temporal neocortex ipsilateral to the mesial temporal BOLD response. T-values were higher in mesial temporal structures than in neocortex in 13/16 cases. CONCLUSIONS Hemodynamic changes were observed in the mesial temporal lobe at the time of IEDs recorded from the temporal region on the scalp. The finding of smaller BOLD changes in the ipsilateral neocortex is in agreement with our hypothesis. SIGNIFICANCE Our study indicates that scalp-recorded temporal lobe spikes are likely to result from mesial temporal spikes propagating neuronally to the neocortex.
Collapse
|
3
|
Pittau F, Ferri L, Fahoum F, Dubeau F, Gotman J. Contributions of EEG-fMRI to Assessing the Epileptogenicity of Focal Cortical Dysplasia. Front Comput Neurosci 2017; 11:8. [PMID: 28265244 PMCID: PMC5316536 DOI: 10.3389/fncom.2017.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose: To examine the ability of the BOLD response to EEG spikes to assess the epileptogenicity of the lesion in patients with focal cortical dysplasia (FCD). Method: Patients with focal epilepsy and FCD who underwent 3T EEG-fMRI from 2006 to 2010 were included. Diagnosis of FCD was based on neuroradiology (MRI+), or histopathology in MRI-negative cases (MRI−). Patients underwent 120 min EEG-fMRI recording session. Spikes similar to those recorded outside the scanner were marked in the filtered EEG. The lesion (in MRI+) or the removed cortex (in MRI−) was marked on the anatomical T1 sequence, blindly to the BOLD response, after reviewing the FLAIR images. For each BOLD response we assessed the concordance with the spike field and with the lesion in MRI+ or the removed cortex in MRI−. BOLD responses were considered “concordant” if the maximal t-value was inside the marking. Follow-up after resection was used as gold-standard. Results: Twenty patients were included (13 MRI+, 7 MRI−), but in seven the EEG was not active or there were artifacts during acquisition. In all 13 studied patients, at least one BOLD response was concordant with the spike field; in 9/13 (69%) at least one BOLD response was concordant with the lesion: in 6/7 (86%) MRI+ and in 3/6 (50%) MRI− patients. Conclusions: Our study shows a high level of concordance between FCD and BOLD response. This data could provide useful information especially for MRI negative patients. Moreover, it shows in almost all FCD patients, a metabolic involvement of remote cortical or subcortical structures, corroborating the concept of epileptic network.
Collapse
Affiliation(s)
- Francesca Pittau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill UniversityQuébec, QC, Canada; Neurology Department, Geneva University HospitalsGeneva, Switzerland
| | - Lorenzo Ferri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Firas Fahoum
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| |
Collapse
|
4
|
High frequency spectral changes induced by single-pulse electric stimulation: Comparison between physiologic and pathologic networks. Clin Neurophysiol 2016; 128:1053-1060. [PMID: 28131532 DOI: 10.1016/j.clinph.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate functional coupling between brain networks using spectral changes induced by single-pulse electric stimulation (SPES). METHOD We analyzed 20 patients with focal epilepsy, implanted with depth electrodes. SPES was applied to each pair of adjacent contacts, and responses were recorded from all other contacts. The mean response amplitude value was quantified in three time-periods after stimulation (10-60, 60-255, 255-500ms) for three frequency-ranges (Gamma, Ripples, Fast-Ripples), and compared to baseline. A total of 30,755 responses were analyzed, taking into consideration three dichotomous pairs: stimulating in primary sensory areas (S1-V1) vs. outside them, to test the interaction in physiologic networks; stimulating in seizure onset zone (SOZ) vs. non-SOZ, to test pathologic interactions; recording in default mode network (DMN) vs. non-DMN. RESULTS Overall, we observed an early excitation (10-60ms) and a delayed inhibition (60-500ms). More specifically, in the delayed period, stimulation in S1-V1 produced a higher gamma-inhibition in the DMN, while stimulation in the SOZ induced a higher inhibition in the epilepsy-related higher frequencies (Ripples and Fast-Ripples). CONCLUSION Physiologic and pathologic interactions can be assessed using spectral changes induced by SPES. SIGNIFICANCE This is a promising method for connectivity studies in patients with drug-resistant focal epilepsy.
Collapse
|
5
|
Pellegrino G, Machado A, von Ellenrieder N, Watanabe S, Hall JA, Lina JM, Kobayashi E, Grova C. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings. Front Neurosci 2016; 10:102. [PMID: 27047325 PMCID: PMC4801878 DOI: 10.3389/fnins.2016.00102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Alexis Machado
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Nicolas von Ellenrieder
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Satsuki Watanabe
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Jean-Marc Lina
- Departement de Génie Electrique, Ecole de Technologie SupérieureMontreal, QC, Canada; Center of Advanced Research in Sleep Medicine, Hospital Du Sacre-CœurMontreal, QC, Canada; Centre de Recherches Mathematiques, University of MontréalMontreal, QC, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill UniversityMontreal, QC, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and HospitalMontreal, QC, Canada; Centre de Recherches Mathematiques, University of MontréalMontreal, QC, Canada; Physics Department and Perform Center, Concordia UniversityMontreal, QC, Canada
| |
Collapse
|
6
|
Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS. Neuroimage 2015; 126:239-55. [PMID: 26619785 DOI: 10.1016/j.neuroimage.2015.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/24/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data.
Collapse
|
7
|
Beers CA, Williams RJ, Gaxiola-Valdez I, Pittman DJ, Kang AT, Aghakhani Y, Pike GB, Goodyear BG, Federico P. Patient specific hemodynamic response functions associated with interictal discharges recorded via simultaneous intracranial EEG-fMRI. Hum Brain Mapp 2015; 36:5252-64. [PMID: 26417648 DOI: 10.1002/hbm.23008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/26/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
Simultaneous collection of scalp EEG and fMRI has become an important tool for studying the hemodynamic changes associated with interictal epileptiform discharges (IEDs) in persons with epilepsy, and has become a standard presurgical assessment tool in some centres. We previously demonstrated that performing EEG-fMRI using intracranial electrodes (iEEG-fMRI) is of low risk to patients in our research centre, and offers unique insight into BOLD signal changes associated with IEDs recorded from very discrete sources. However, it is unknown whether the BOLD response corresponding to IEDs recorded by iEEG-fMRI follows the canonical hemodynamic response. We therefore scanned 11 presurgical epilepsy patients using iEEG-fMRI, and assessed the hemodynamic response associated with individual IEDs using two methods: assessment of BOLD signal changes associated with isolated IEDs at the location of the active intracranial electrode, and by estimating subject-specific impulse response functions to isolated IEDs. We found that the hemodynamic response associated with the intracranially recorded discharges varied by patient and by spike location. The observed shape and timing differences also deviated from the canonical hemodynamic response function traditionally used in many fMRI experiments. It is recommended that future iEEG-fMRI studies of IEDs use a flexible hemodynamic response model when performing parametric tests to accurately characterize these data.
Collapse
Affiliation(s)
- Craig A Beers
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca J Williams
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Ismael Gaxiola-Valdez
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Daniel J Pittman
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Anita T Kang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yahya Aghakhani
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Paolo Federico
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|