1
|
Missey F, Acerbo E, Dickey A, Trajlinek J, Studnicka O, Lubrano C, De Araujo E Silva M, Brady E, Vsiansky V, Szabo JP, Dolezalova I, Fabo D, Pail M, Gutekunst CA, Migliore R, Migliore M, Lagarde S, Carron R, Karimi F, Astorga R, Cassara A, Kuster N, Neufeld E, Bartolomei F, Pedersen NP, Gross R, Jirsa V, Drane D, Brazdil M, Williamson A. Non-invasive Temporal Interference Stimulation of the Hippocampus Suppresses Epileptic Biomarkers in Patients with Epilepsy: Biophysical Differences between Kilohertz and Amplitude Modulated Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24303799. [PMID: 39711722 PMCID: PMC11661391 DOI: 10.1101/2024.12.05.24303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Medication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation. Thirteen patients with symptoms of mesiotemporal epilepsy (MTLE) and implanted with stereoelectroencephalography (sEEG) depth electrodes received TI stimulation with an amplitude modulation (AM) frequency of 130Hz (df), where the AM was delivered with lower frequency kHz carriers (1kHz + 1.13kHz), or higher frequency carriers (9kHz + 9.13kHz), targeting the hippocampus, a common epileptic focus and consequently stimulation target in MTLE. Our results show that TI stimulation yields a statistically significant decrease in interictal epileptiform discharges (IEDs) and pathological high-frequency oscillations (HFOs) specifically fast ripples (FR), where the suppression is apparent in the hippocampal focus and propagation from the focus is reduced brain-wide. HF sham stimulation at 1kHz frequency also impacted the IED rate in the cortex, but without reaching the hippocampal focus. The HF sham effect diminished with increasing frequencies (2, 5, and 9kHz, respectively), specifically as a function of depth into the cortex. This depth dependence was not observed with the TI, independent of the employed carrier frequency (low or high kHz). Furthermore, a strong carry-over effect, i.e., suppression of epileptic biomarkers for a period of time after the end of stimulation, was observed for TI but not for kHz. Our findings underscore the possible application of TI in epilepsy, as an additional non-invasive brain stimulation tool, potentially offering opportunities to assess brain region response to electrical neuromodulation before committing to a deep brain stimulation (DBS) or responsive neurostimulation (RNS) implants. Our results further demonstrate distinct biophysical differences between kHz and focal AM stimulation.
Collapse
|
2
|
Maeda K, Hosoda N, Fukumoto J, Kawai S, Hayafuji M, Tsuboi H, Fujita S, Ichino N, Osakabe K, Sugimoto K, Ishihara N. Association of Scalp High-Frequency Oscillation Detection and Characteristics With Disease Activity in Pediatric Epilepsy. J Clin Neurophysiol 2025; 42:28-35. [PMID: 37934062 DOI: 10.1097/wnp.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE High-frequency oscillation (HFO) in scalp electroencephalography is a promising new noninvasive prognostic epilepsy biomarker, but further data are needed to ascertain the utility of this parameter. The present work investigated the association between epileptic activity and scalp HFO in pediatric patients with various types of epilepsy, using multivariable regression models to correct for possible confounding factors. METHODS The authors analyzed 97 subjects who were divided into groups with active epilepsy (within 1 year of seizure), seizure-free epilepsy (>1 year without seizure), and nonepilepsy. Regarding the frequency of seizure occurrence as an indicator of epileptic activity, we categorized subjects into four groups (Daily/Weekly, Monthly, Yearly, and Rarely). RESULTS Multiple linear regression analysis showed that the scalp HFO detection rate was significantly higher in patients with active epilepsy than in those with nonepilepsy (β [95% confidence interval] = 2.77 [1.79-4.29]; P < 0.001). The association between scalp HFO detection rate and frequency of seizure occurrence was highest in the Daily/Weekly group (β [95% confidence interval] = 3.38 [1.57-7.27]; P = 0.002), followed by Monthly and Yearly groups (β [95% confidence interval] = 2.42 [1.02-5.73]; P = 0.046 and 0.36 [0.16-0.83]; P = 0.017). In addition, HFO duration, number of peaks, and number of channels detected were significantly higher in patients with active epilepsy. CONCLUSIONS Pediatric patients with active epilepsy and high frequency of seizure occurrence exhibited a higher scalp HFO detection rate. These results may help to establish HFO detectable by noninvasive scalp electroencephalography as a biomarker of active epilepsy in pediatric patients.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nami Hosoda
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Junichi Fukumoto
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Shun Kawai
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Mizuki Hayafuji
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Himari Tsuboi
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Shiho Fujita
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Naohiro Ichino
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Osakabe
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keiko Sugimoto
- Department of Medical Sciences Education, Fujita Health University School of Medical Sciences, Toyoake, Japan; and
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
3
|
Jin BZ, Capiglioni M, Federspiel A, Ahmadli U, Schindler K, Kiefer C, Wiest R. Neuronal current imaging of epileptic activity: An MRI study in patients with a first unprovoked epileptic seizure. Epilepsia Open 2024; 9:1745-1757. [PMID: 38970780 PMCID: PMC11450614 DOI: 10.1002/epi4.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE This study evaluates the performance of the novel MRI sequence stimulus-induced rotary saturation (SIRS) to map responses to interictal epileptic activity in the human cortex. Spin-lock pulses have been applied to indirectly detect neuronal activity through magnetic field perturbations. Following initial reports about the feasibility of the method in humans and animals with epilepsy, we aimed to investigate the diagnostic yield of spin-lock MR pulses in comparison with scalp-EEG in first seizure patients. METHODS We employed a novel method for measurements of neuronal activity through the detection of a resonant oscillating field, stimulus-induced rotary saturation contrast (SIRS) at spin-lock frequencies of 120 and 240 Hz acquired at a single 3T MRI system. Within a prospective observational study, we conducted SIRS experiments in 55 patients within 7 days after a suspected first unprovoked epileptic seizure and 61 healthy control subjects. In this study, we report on the analysis of data from a single 3T MRI system, encompassing 35 first seizure patients and 31 controls. RESULTS The SIRS method was applicable in all patients and healthy controls at frequencies of 120 and 240 Hz. We did not observe any significant age- or sex-related differences. Specificity of SIRS at 120 Hz was 90.3% and 93.5% at 240 Hz. Sensitivity was 17.1% at 120 Hz and 40.0% at 240 Hz. SIGNIFICANCE SIRS targets neuronal oscillating magnetic fields in patients with epilepsy. The coupling of presaturated spins to epilepsy-related magnetic field perturbations may serve as a-at this stage experimental-diagnostic test in first seizure patients to complement EEG findings as a standard screening test. PLAIN LANGUAGE SUMMARY Routine diagnostic tests carry several limitations when applied after a suspected first seizure. SIRS is a noninvasive MRI method to enable time-sensitive diagnosis of image correlates of epileptic activity with increased sensitivity compared to routine EEG.
Collapse
Affiliation(s)
- Baudouin Zongxin Jin
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
- Sleep‐Wake‐Epilepsy‐Center, Department of NeurologyInselspital, Bern University Hospital, University of BernBernSwitzerland
- Graduate School of Health Sciences, Medical FacultyUniversity of BernBernSwitzerland
| | - Milena Capiglioni
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
| | - Andrea Federspiel
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
| | - Uzeyir Ahmadli
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
| | - Kaspar Schindler
- Sleep‐Wake‐Epilepsy‐Center, Department of NeurologyInselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Claus Kiefer
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
- Swiss Institute for Translational and Entrepreneurial MedicineSitem‐InselBernSwitzerland
| |
Collapse
|
4
|
Cai Z, Jiang X, Bagić A, Worrell GA, Richardson M, He B. Spontaneous HFO Sequences Reveal Propagation Pathways for Precise Delineation of Epileptogenic Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592202. [PMID: 38746136 PMCID: PMC11092614 DOI: 10.1101/2024.05.02.592202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epilepsy, a neurological disorder affecting millions worldwide, poses great challenges in precisely delineating the epileptogenic zone - the brain region generating seizures - for effective treatment. High-frequency oscillations (HFOs) are emerging as promising biomarkers; however, the clinical utility is hindered by the difficulties in distinguishing pathological HFOs from non- epileptiform activities at single electrode and single patient resolution and understanding their dynamic role in epileptic networks. Here, we introduce an HFO-sequencing approach to analyze spontaneous HFOs traversing cortical regions in 40 drug-resistant epilepsy patients. This data- driven method automatically detected over 8.9 million HFOs, pinpointing pathological HFO- networks, and unveiled intricate millisecond-scale spatiotemporal dynamics, stability, and functional connectivity of HFOs in prolonged intracranial EEG recordings. These HFO sequences demonstrated a significant improvement in localization of epileptic tissue, with an 818.47% increase in concordance with seizure-onset zone (mean error: 2.92 mm), compared to conventional benchmarks. They also accurately predicted seizure outcomes for 90% AUC based on pre-surgical information using generalized linear models. Importantly, this mapping remained reliable even with short recordings (mean standard deviation: 3.23 mm for 30-minute segments). Furthermore, HFO sequences exhibited distinct yet highly repetitive spatiotemporal patterns, characterized by pronounced synchrony and predominant inward information flow from periphery towards areas involved in propagation, suggesting a crucial role for excitation-inhibition balance in HFO initiation and progression. Together, these findings shed light on the intricate organization of epileptic network and highlight the potential of HFO-sequencing as a translational tool for improved diagnosis, surgical targeting, and ultimately, better outcomes for vulnerable patients with drug-resistant epilepsy. One Sentence Summary Pathological fast brain oscillations travel like traffic along varied routes, outlining recurrently visited neural sites emerging as critical hotspots in epilepsy network.
Collapse
|
5
|
Remakanthakurup Sindhu K, Phan C, Anis S, Riba A, Garner C, Magers AL, Tran N, Maser AL, Simon KC, Mednick SC, Shrey DW, Lopour BA. Physiological ripples during sleep in scalp electroencephalogram of healthy infants. Sleep 2023; 46:zsad247. [PMID: 37816242 PMCID: PMC10710989 DOI: 10.1093/sleep/zsad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Affiliation(s)
| | - Christopher Phan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sara Anis
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Aliza Riba
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Cristal Garner
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amber L Magers
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Nhi Tran
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amy L Maser
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Katharine C Simon
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Daniel W Shrey
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Cserpan D, Guidi G, Alessandri B, Fedele T, Rüegger A, Pisani F, Sarnthein J, Ramantani G. Scalp high-frequency oscillations differentiate neonates with seizures from healthy neonates. Epilepsia Open 2023; 8:1491-1502. [PMID: 37702021 PMCID: PMC10690668 DOI: 10.1002/epi4.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE We aimed to investigate (1) whether an automated detector can capture scalp high-frequency oscillations (HFO) in neonates and (2) whether scalp HFO rates can differentiate neonates with seizures from healthy neonates. METHODS We considered 20 neonates with EEG-confirmed seizures and four healthy neonates. We applied a previously validated automated HFO detector to determine scalp HFO rates in quiet sleep. RESULTS Etiology in neonates with seizures included hypoxic-ischemic encephalopathy in 11 cases, structural vascular lesions in 6, and genetic causes in 3. The HFO rates were significantly higher in neonates with seizures (0.098 ± 0.091 HFO/min) than in healthy neonates (0.038 ± 0.025 HFO/min; P = 0.02) with a Hedge's g value of 0.68 indicating a medium effect size. The HFO rate of 0.1 HFO/min/ch yielded the highest Youden index in discriminating neonates with seizures from healthy neonates. In neonates with seizures, etiology, status epilepticus, EEG background activity, and seizure patterns did not significantly impact HFO rates. SIGNIFICANCE Neonatal scalp HFO can be detected automatically and differentiate neonates with seizures from healthy neonates. Our observations have significant implications for neuromonitoring in neonates. This is the first step in establishing neonatal HFO as a biomarker for neonatal seizures.
Collapse
Affiliation(s)
- Dorottya Cserpan
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Greta Guidi
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Beatrice Alessandri
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Tommaso Fedele
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Andrea Rüegger
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
| | - Francesco Pisani
- Department of Human Neurosciences, Child Neurology and Psychiatry UnitSapienza University of RomeRomeItaly
| | - Johannes Sarnthein
- Department of NeurosurgeryUniversity Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| | - Georgia Ramantani
- Department of NeuropediatricsUniversity Children's HospitalZurichSwitzerland
- University of ZurichZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| |
Collapse
|
7
|
Ji Y, Zhang J, Lu H, Yang H, Zhang X, Liu H, Liu W, Zhou W, Zhang X, Sun W. Correlation between scalp high-frequency oscillations and prognosis in patients with benign epilepsy of childhood with centrotemporal spikes. CNS Neurosci Ther 2023; 29:3053-3061. [PMID: 37157892 PMCID: PMC10493670 DOI: 10.1111/cns.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS The study aimed to explore whether high-frequency oscillations (HFOs) can predict seizure risk and atypical manifestations of benign epilepsy of childhood with centrotemporal spikes (BECTS). METHODS We recruited 60 patients and divided them into three groups: (1) seizure-free BECTS, (2) active typical BECTS, and (3) active atypical forms of BECTS. Electroencephalogram was used to record the number, location, average amplitude, and duration of spikes, and spike ripples were analyzed using time-frequency technology. Multivariable logistic regression analysis was used to investigate independent predictive factors for prognosis. RESULTS The number of sleep spike ripples, rather than spikes, was an independent risk factor for the active period of the disease (odds ratio [OR] = 4.714, p = 0.003) and atypical forms of BECTS (OR = 1.455, p = 0.049); the optimal thresholds for the spike ripple rate were >0 (area under the curve [AUC] = 0.885, sensitivity = 96.15%, specificity = 73.33%) and >0.6/min (AUC = 0.936, sensitivity = 84.21%, specificity = 96.15%), respectively. Furthermore, in typical BECTS, the spike ripple rate showed significant negative correlations with time since the last seizure (ρ = -0.409, p = 0.009) and age (ρ = -0.379, p = 0.016), while the spike rate did not. CONCLUSION Spike ripple was a marker for distinguishing typical and atypical forms of BECTS and reflected the risk of seizure recurrence better than the spike alone. The present findings might assist clinicians in BECTS treatment.
Collapse
Affiliation(s)
- Yichen Ji
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Jun Zhang
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Hongjuan Lu
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Haoran Yang
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Xuan Zhang
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Huixin Liu
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Wenjian Liu
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Wei Zhou
- Department of NeurologyMine HospitalXuzhouChina
| | | | - Wei Sun
- Department of NeurologyXuanwu Hospital Capital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Kuhnke N, Wusthoff CJ, Swarnalingam E, Yanoussi M, Jacobs J. Epileptic high-frequency oscillations occur in neonates with a high risk for seizures. Front Neurol 2023; 13:1048629. [PMID: 36686542 PMCID: PMC9848430 DOI: 10.3389/fneur.2022.1048629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Scalp high-frequency oscillations (HFOs, 80-250 Hz) are increasingly recognized as EEG markers of epileptic brain activity. It is, however, unclear what level of brain maturity is necessary to generate these oscillations. Many studies have reported the occurrence of scalp HFOs in children with a correlation between treatment success of epileptic seizures and the reduction of HFOs. More recent studies describe the reliable detection of HFOs on scalp EEG during the neonatal period. Methods In the present study, continuous EEGs of 38 neonates at risk for seizures were analyzed visually for the scalp HFOs using 30 min of quiet sleep EEG. EEGs of 14 patients were of acceptable quality to analyze HFOs. Results The average rate of HFOs was 0.34 ± 0.46/min. About 3.2% of HFOs occurred associated with epileptic spikes. HFOs were significantly more frequent in EEGs with abnormal vs. normal background activities (p = 0.005). Discussion Neonatal brains are capable of generating HFOs. HFO could be a viable biomarker for neonates at risk of developing seizures. Our preliminary data suggest that HFOs mainly occur in those neonates who have altered background activity. Larger data sets are needed to conclude whether HFO occurrence is linked to seizure generation and whether this might predict the development of epilepsy.
Collapse
Affiliation(s)
- Nicola Kuhnke
- Department of Pediatric Neurology and Muscular Disease, University Medical Center, Freiburg, Germany
| | | | - Eroshini Swarnalingam
- Department of Pediatrics, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mina Yanoussi
- Department of Pediatric Neurology and Muscular Disease, University Medical Center, Freiburg, Germany
| | - Julia Jacobs
- Department of Pediatrics, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada,*Correspondence: Julia Jacobs ✉
| |
Collapse
|
9
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Windhager PF, Marcu AV, Trinka E, Bathke A, Höller Y. Are High Frequency Oscillations in Scalp EEG Related to Age? Front Neurol 2022; 12:722657. [PMID: 35153968 PMCID: PMC8829347 DOI: 10.3389/fneur.2021.722657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND High-frequency oscillations (HFOs) have received much attention in recent years, particularly in the clinical context. In addition to their application as a marker for pathological changes in patients with epilepsy, HFOs have also been brought into context with several physiological mechanisms. Furthermore, recent studies reported a relation between an increase of HFO rate and age in invasive EEG recordings. The present study aimed to investigate whether this relation can be replicated in scalp-EEG. METHODS We recorded high-density EEG from 11 epilepsy patients at rest as well as during motor performance. Manual detection of HFOs was performed by two independent raters following a standardized protocol. Patients were grouped by age into younger (<25 years) and older (>50 years) participants. RESULTS No significant difference of HFO-rates was found between groups [U = 10.5, p = 0.429, r = 0.3]. CONCLUSIONS Lack of replicability of the age effect of HFOs may be due to the local propagation patterns of age-related HFOs occurring in deep structures. However, limitations such as small sample size, decreased signal-to-noise ratio as compared to invasive recordings, as well as HFO-mimicking artifacts must be considered.
Collapse
Affiliation(s)
- Philipp Franz Windhager
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,*Correspondence: Philipp Franz Windhager
| | - Adrian V. Marcu
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Arne Bathke
- Department of Mathematics, Paris Lodron University Salzburg, Salzburg, Austria
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
11
|
High-frequency oscillations in scalp EEG: A systematic review of methodological choices and clinical findings. Clin Neurophysiol 2022; 137:46-58. [PMID: 35272185 DOI: 10.1016/j.clinph.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
|
12
|
Oka M, Kobayashi K, Shibata T, Tsuchiya H, Hanaoka Y, Akiyama M, Morooka T, Matsuhashi M, Akiyama T. A study on the relationship between non-epileptic fast (40 - 200 Hz) oscillations in scalp EEG and development in children. Brain Dev 2021; 43:904-911. [PMID: 34052035 DOI: 10.1016/j.braindev.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Physiological gamma and ripple activities may be linked to neurocognitive functions. This study investigated the relationship between development and non-epileptic, probably physiological, fast (40-200 Hz) oscillations (FOs) including gamma (40 - 80 Hz) and ripple (80 - 200 Hz) oscillations in scalp EEG in children with neurodevelopmental disorders. METHODS Participants were 124 children with autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). Gamma and ripple oscillations were explored from 60-second-long sleep EEG data in each subject using a semi-automatic detection tool supplemented with visual confirmation and time-frequency analysis. RESULTS Gamma and ripple oscillations were detected in 25 (20.2%) and 22 (17.7%) children, respectively. The observation of one or more occurrence(s) of ripple oscillations, but not gamma oscillations, was significantly related to lower age at EEG recording (odds ratio, OR: 0.727 [95% confidence interval, CI: 0.568-0.929]), higher intelligence/developmental quotient (OR: 1.041, 95% CI: 1.002-1.082), and lack of a diagnosis with ADHD (OR: 0.191, 95% CI: 0.039 - 0.937) according to a binominal logistic regression analysis that included diagnosis with ASD, sex, history of perinatal complications, history of febrile seizures, and use of a sedative agent for the EEG recording as the other non-significant parameters. Diagnostic group was not related to frequency or power of spectral peaks of FOs. CONCLUSION The production of non-epileptic scalp ripples was confirmed to be associated with brain development and function/dysfunction in childhood. Further investigation is necessary to interpret all of the information on higher brain functions that may be embedded in scalp FOs.
Collapse
Affiliation(s)
- Makio Oka
- Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, Japan; Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yoshiyuki Hanaoka
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Teruko Morooka
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
13
|
Yang Y, Wang W, Wang J, Wang M, Li X, Yan Z, Deng Q, Feng X, Luan G, Yang X, Li T. Scalp-HFO indexes are biomarkers for the lateralization and localization of the epileptogenic zone in preoperative assessment. J Neurophysiol 2021; 126:1148-1158. [PMID: 34495792 DOI: 10.1152/jn.00212.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the noninvasive evaluation phase for refractory epilepsy, the localization of the epileptogenic zone (EZ) is essential for the surgical protocols. Confirmation of laterality is required when the preoperative evaluation limits the EZ to bilateral anterior temporal lobes or bilateral frontal lobes. High-frequency oscillations (HFOs) are considered to be promising biological markers for the EZ. However, a large number of studies on HFOs stem from intracranial research. There were few quantitative measures for scalp HFOs, so we proposed a new method to quantify and analyze scalp HFOs. This method was called the "scalp-HFO index" (HI) and calculated in both the EZ and non-EZ. The calculation was based on the numbers and spectral power of scalp HFOs automatically detected. We labeled the brain lobes involved in the EZ as regions of interest (ROIs). The HIs based on the ripple numbers (n-HI) and spectral power (s-HI) were significantly higher in the ROI than in the contra-ROI (P = 0.012, P = 0.003), indicating that HIs contributed to the lateralization of EZ. The sensitivity and specificity of n-HI for the localization of the EZ were 90% and 79.58%, respectively, suggesting that n-HI was valuable in localizing the EZ. HI may contribute to the implantation strategy of invasive electrodes. However, few scalp HFOs were recorded when the EZ was located in the medial cortex region.NEW & NOTEWORTHY We proposed the scalp-high-frequency oscillation (HFO) index (HI) as a quantitative assessment method for scalp HFOs to locate the epileptogenic zone (EZ). Our results showed that the HI in regions of interest (ROIs) was significantly higher than in contra-ROIs. Sensitivity and specificity of HI based on ripple rates (n-HI) for EZ localization were 90% and 79.58%, respectively. If the n-HI of the brain region was >1.35, it was more likely to be an epileptogenic region. Clinical application of HIs as an indicator may facilitate localization of the EZ.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaonan Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Zhaofen Yan
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qinqin Deng
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xing Feng
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Wang W, Li H, Yan J, Zhang H, Li X, Zheng S, Wang J, Xing Y, Cheng L, Li D, Lai H, Qu J, Loh HH, Fang F, Yang X. Automatic detection of interictal ripples on scalp EEG to evaluate the effect and prognosis of ACTH therapy in patients with infantile spasms. Epilepsia 2021; 62:2240-2251. [PMID: 34309835 DOI: 10.1111/epi.17018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We aimed to explore the feasibility of using scalp-recorded high-frequency oscillations (HFOs) to evaluate the efficacy and prognosis of adrenocorticotropic hormone (ACTH) treatment in patients with infantile spasms. METHODS Thirty-nine children with infantile spasms were enrolled and divided into seizure-free and non-seizure-free groups after ACTH treatment. Patients who were seizure-free were further divided into relapse and non-relapse subgroups based on the observations made during a 6-month follow-up period. Scalp ripples were detected and compared during the interictal periods before and after 2 weeks of treatment. RESULTS After ACTH treatment, the number and channels of ripples were significantly lower, whereas the percentage decrease in the number, spectral power, and channels of ripples was significantly higher in the seizure-free group than in the non-seizure-free group. In addition, the relapse subgroup showed higher number and spectral power and wider distribution of ripples than did the non-relapse subgroup. Changes in HFOs in terms of number, spectral power, and channel of ripples were closely related to the severity of epilepsy and can indicate disease susceptibility. SIGNIFICANCE Scalp HFOs can be used as an effective biomarker to monitor the effect and evaluate the prognosis of ACTH therapy in patients with infantile spasms.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Hua Li
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Herui Zhang
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaonan Li
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Su Zheng
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiaoyang Wang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yue Xing
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Lipeng Cheng
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Donghong Li
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huanling Lai
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Junda Qu
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Horace H Loh
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
15
|
Yan L, Li L, Chen J, Wang L, Jiang L, Hu Y. Application of High-Frequency Oscillations on Scalp EEG in Infant Spasm: A Prospective Controlled Study. Front Hum Neurosci 2021; 15:682011. [PMID: 34177501 PMCID: PMC8223253 DOI: 10.3389/fnhum.2021.682011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
Objective We quantitatively analyzed high-frequency oscillations (HFOs) using scalp electroencephalography (EEG) in patients with infantile spasms (IS). Methods We enrolled 60 children with IS hospitalized from January 2019 to August 2020. Sixty healthy age-matched children comprised the control group. Time-frequency analysis was used to quantify γ, ripple, and fast ripple (FR) oscillation energy changes. Results γ, ripple, and FR oscillations dominated in the temporal and frontal lobes. The average HFO energy of the sleep stage is lower than that of the wake stage in the same frequency bands in both the normal control (NC) and IS groups (P < 0.05). The average HFO energy of the IS group was significantly higher than that of the NC group in γ band during sleep stage (P < 0.01). The average HFO energy of S and Post-S stage were higher than that of sleep stage in γ band (P < 0.05). In the ripple band, the average HFO energy of Pre-S, S, and Post-S stage was higher than that of sleep stage (P < 0.05). Before treatment, there was no significant difference in BASED score between the effective and ineffective groups. The interaction of curative efficacy × frequency and the interaction of curative efficacy × state are statistically significant. The average HFO energy of the effective group was lower than that of the ineffective group in the sleep stage (P < 0.05). For the 16 children deemed "effective" in the IS group, the average HFO energy of three frequency bands was not significantly different before compared with after treatment. Significance Scalp EEG can record HFOs. The energy of HFOs can distinguish physiological HFOs from pathological ones more accurately than frequency. On scalp EEG, γ oscillations can better detect susceptibility to epilepsy than ripple and FR oscillations. HFOs can trigger spasms. The analysis of average HFO energy can be used as a predictor of the effectiveness of epilepsy treatment.
Collapse
Affiliation(s)
- Lisi Yan
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lin Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jin Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
16
|
Noninvasive high-frequency oscillations riding spikes delineates epileptogenic sources. Proc Natl Acad Sci U S A 2021; 118:2011130118. [PMID: 33875582 PMCID: PMC8092606 DOI: 10.1073/pnas.2011130118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Millions of people affected by epilepsy may undergo surgical resection of the epileptic tissues to stop seizures if such epileptic foci can be accurately delineated. High-frequency oscillations (HFOs), existing in electroencephalography, are highly correlated with epileptic brain, which is promising for guiding successful neurosurgery. However, it is unclear whether and how pathological HFOs can be differentiated to localize the epileptogenic tissues given the presence of various nonepileptic high-frequency activities. Here, we show morphological and source imaging evidence that pathological HFOs can be identified by the concurrence of epileptiform spikes. We describe a framework to delineate the underlying epileptogenicity using this biomarker. Our work may offer translational tools to improve treatments by noninvasively demarking pathological activities and hence epileptic foci. High-frequency oscillations (HFOs) are a promising biomarker for localizing epileptogenic brain and guiding successful neurosurgery. However, the utility and translation of noninvasive HFOs, although highly desirable, is impeded by the difficulty in differentiating pathological HFOs from nonepileptiform high-frequency activities and localizing the epileptic tissue using noninvasive scalp recordings, which are typically contaminated with high noise levels. Here, we show that the consistent concurrence of HFOs with epileptiform spikes (pHFOs) provides a tractable means to identify pathological HFOs automatically, and this in turn demarks an epileptiform spike subgroup with higher epileptic relevance than the other spikes in a cohort of 25 temporal epilepsy patients (including a total of 2,967 interictal spikes and 1,477 HFO events). We found significant morphological distinctions of HFOs and spikes in the presence/absence of this concurrent status. We also demonstrated that the proposed pHFO source imaging enhanced localization of epileptogenic tissue by 162% (∼5.36 mm) for concordance with surgical resection and by 186% (∼12.48 mm) with seizure-onset zone determined by invasive studies, compared to conventional spike imaging, and demonstrated superior congruence with the surgical outcomes. Strikingly, the performance of spike imaging was selectively boosted by the presence of spikes with pHFOs, especially in patients with multitype spikes. Our findings suggest that concurrent HFOs and spikes reciprocally discriminate pathological activities, providing a translational tool for noninvasive presurgical diagnosis and postsurgical evaluation in vulnerable patients.
Collapse
|
17
|
Noorlag L, van 't Klooster MA, van Huffelen AC, van Klink NEC, Benders MJNL, de Vries LS, Leijten FSS, Jansen FE, Braun KPJ, Zijlmans M. High-frequency oscillations recorded with surface EEG in neonates with seizures. Clin Neurophysiol 2021; 132:1452-1461. [PMID: 34023627 DOI: 10.1016/j.clinph.2021.02.400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Neonatal seizures are often the first symptom of perinatal brain injury. High-frequency oscillations (HFOs) are promising new biomarkers for epileptogenic tissue and can be found in intracranial and surface EEG. To date, we cannot reliably predict which neonates with seizures will develop childhood epilepsy. We questioned whether epileptic HFOs can be generated by the neonatal brain and potentially predict epilepsy. METHODS We selected 24 surface EEGs sampled at 2048 Hz with 175 seizures from 16 neonates and visually reviewed them for HFOs. Interictal epochs were also reviewed. RESULTS We found HFOs in thirteen seizures (7%) from four neonates (25%). 5025 ictal ripples (rate 10 to 1311/min; mean frequency 135 Hz; mean duration 66 ms) and 1427 fast ripples (rate 8 to 356/min; mean frequency 298 Hz; mean duration 25 ms) were marked. Two neonates (13%) showed interictal HFOs (285 ripples and 25 fast ripples). Almost all HFOs co-occurred with sharp transients. We could not find a relationship between neonatal HFOs and outcome yet. CONCLUSIONS Neonatal HFOs co-occur with ictal and interictal sharp transients. SIGNIFICANCE The neonatal brain can generate epileptic ripples and fast ripples, particularly during seizures, though their occurrence is not common and potential clinical value not evident yet.
Collapse
Affiliation(s)
- Lotte Noorlag
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands.
| | - Maryse A van 't Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Alexander C van Huffelen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Nicole E C van Klink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Floor E Jansen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede and Zwolle, the Netherlands
| |
Collapse
|
18
|
Cserpan D, Boran E, Lo Biundo SP, Rosch R, Sarnthein J, Ramantani G. Scalp high-frequency oscillation rates are higher in younger children. Brain Commun 2021; 3:fcab052. [PMID: 33870193 PMCID: PMC8042248 DOI: 10.1093/braincomms/fcab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
High-frequency oscillations in scalp EEG are promising non-invasive biomarkers of epileptogenicity. However, it is unclear how high-frequency oscillations are impacted by age in the paediatric population. We prospectively recorded whole-night scalp EEG in 30 children and adolescents with focal or generalized epilepsy. We used an automated and clinically validated high-frequency oscillation detector to determine ripple rates (80-250 Hz) in bipolar channels. Children < 7 years had higher high-frequency oscillation rates (P = 0.021) when compared with older children. The median test-retest reliability of high-frequency oscillation rates reached 100% (iqr 50) for a data interval duration of 10 min. Scalp high-frequency oscillation frequency decreased with age (r = -0.558, P = 0.002), whereas scalp high-frequency oscillation duration and amplitude were unaffected. The signal-to-noise ratio improved with age (r = 0.37, P = 0.048), and the background ripple band activity decreased with age (r = -0.463, P = 0.011). We characterize the relationship of scalp high-frequency oscillation features and age in paediatric patients. EEG intervals of ≥ 10 min duration are required for reliable measurements of high-frequency oscillation rates. This study is a further step towards establishing scalp high-frequency oscillations as a valid epileptogenicity biomarker in this vulnerable age group.
Collapse
Affiliation(s)
- Dorottya Cserpan
- Department of Neuropediatrics, University Children's Hospital Zurich, 8032 Zurich, Switzerland,Department of Neurosurgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Ece Boran
- Department of Neurosurgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Santo Pietro Lo Biundo
- Department of Neuropediatrics, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Richard Rosch
- Department of Neuropediatrics, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, 8006 Zurich, Switzerland,University of Zurich, 8006 Zurich, Switzerland,Klinisches Neurozentrum Zurich, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, 8032 Zurich, Switzerland,University of Zurich, 8006 Zurich, Switzerland,Children’s Research Centre, University Children's Hospital Zurich, 8032 Zurich, Switzerland,Correspondence to: Georgia Ramantani, MD, PhD Department of Neuropediatrics, University Children's Hospital Zurich Steinwiesstrasse 75, 8032 Zurich, Switzerland. E-mail:
| |
Collapse
|
19
|
Xiang J, Maue E, Fujiwara H, Mangano FT, Greiner H, Tenney J. Delineation of epileptogenic zones with high frequency magnetic source imaging based on kurtosis and skewness. Epilepsy Res 2021; 172:106602. [PMID: 33713889 DOI: 10.1016/j.eplepsyres.2021.106602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neuromagnetic high frequency brain signals (HFBS, > 80 Hz) are a new biomarker for localization of epileptogenic zones (EZs) for pediatric epilepsy. METHODS Twenty three children with drug-resistant epilepsy and age/sex matched healthy controls were studied with magnetoencephalography (MEG). Epileptic HFBS in 80-250 Hz and 250-600 Hz were quantitatively determined by comparing with normative controls in terms of kurtosis and skewness. Magnetic sources of epileptic HFBS were localized and then compared to clinical EZs determined by invasive recordings and surgical outcomes. RESULTS Kurtosis and skewness of HFBS were significantly elevated in epilepsy patients compared to healthy controls (p < 0,001 and p < 0.0001, respectively). Sources of elevated MEG signals in comparison to normative data were co-localized to EZs for 22 (22/23, 96 %) patients. CONCLUSIONS The results indicate, for the first time, that epileptic HFBS can be noninvasively quantified by measuring kurtosis and skewness in MEG data. Magnetic source imaging based on kurtosis and skewness can accurately localize EZs. SIGNIFICANCE Source imaging of kurtosis and skewness of MEG HFBS provides a novel way for preoperative localization of EZs for epilepsy surgery.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Ellen Maue
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
20
|
McCrimmon CM, Riba A, Garner C, Maser AL, Phillips DJ, Steenari M, Shrey DW, Lopour BA. Automated detection of ripple oscillations in long-term scalp EEG from patients with infantile spasms. J Neural Eng 2021; 18. [PMID: 33217752 DOI: 10.1088/1741-2552/abcc7e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/20/2020] [Indexed: 11/11/2022]
Abstract
Objective.Scalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.Approach.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls. For patients with IS, recording began prior to diagnosis and continued through initiation of treatment with adrenocorticotropic hormone (ACTH). The median analyzable EEG duration was 18.2 h for controls and 84.5 h for IS subjects (∼1300 h total). Ripples (80-250 Hz) were detected in all EEG data using an automated algorithm.Main results.HFO rates were substantially higher in patients with IS compared to controls. In IS patients, HFO rates were higher during sleep compared to wakefulness (median 5.5 min-1and 2.9 min-1, respectively;p = 0.002); controls did not exhibit a difference in HFO rate between sleep and wakefulness (median 0.98 min-1and 0.82 min-1, respectively). Spatially, IS patients exhibited significantly higher rates of HFOs in the posterior parasaggital region and significantly lower HFO rates in frontal channels, and this difference was more pronounced during sleep. In IS subjects, ACTH therapy significantly decreased the rate of HFOs.Significance.Here we provide a detailed characterization of the spatial distribution and rates of HFOs associated with IS, which may have relevance for diagnosis and assessment of treatment response. We also demonstrate that our fully automated algorithm can be used to detect HFOs in long-term scalp EEG with sufficient accuracy to clearly discriminate healthy subjects from those with IS.
Collapse
Affiliation(s)
- Colin M McCrimmon
- Medical Scientist Training Program, University of California, Irvine, CA 92617, United States of America.,Department Neurology, University of California, Los Angeles, CA 90095, United States of America
| | - Aliza Riba
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Cristal Garner
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Amy L Maser
- Department Psychology, Children's Hospital of Orange County, Orange, CA 92868, United States of America
| | - Donald J Phillips
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Maija Steenari
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Daniel W Shrey
- Division Neurology, Children's Hospital of Orange County, Orange, CA 92868, United States of America.,Department Pediatrics, University of California, Irvine, Irvine, CA 92617, United States of America
| | - Beth A Lopour
- Department Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, United States of America
| |
Collapse
|
21
|
Ramon C, Holmes MD. Increased Phase Cone Turnover in 80-250 Hz Bands Occurs in the Epileptogenic Zone During Interictal Periods. Front Hum Neurosci 2021; 14:615744. [PMID: 33424570 PMCID: PMC7785702 DOI: 10.3389/fnhum.2020.615744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
We found that phase cone clustering patterns in EEG ripple bands demonstrate an increased turnover rate in epileptogenic zones compared to adjacent regions. We employed 256 channel EEG data collected in four adult subjects with refractory epilepsy. The analysis was performed in the 80-150 and 150-250 Hz ranges. Ictal onsets were documented with intracranial EEG recordings. Interictal scalp recordings, free of epileptiform patterns, of 240-s duration, were selected for analysis for each subject. The data was filtered, and the instantaneous phase was extracted after the Hilbert transformation. Spatiotemporal contour plots of the unwrapped instantaneous phase with 1.0 ms intervals were constructed using a montage layout of the 256 electrode positions. Stable phase cone patterns were selected based on criteria that the sign of spatial gradient did not change for a minimum of three consecutive time samples and the frame velocity was consistent with known propagation velocities of cortical axons. These plots exhibited increased dynamical formation and dissolution of phase cones in the ictal onset zones, compared to surrounding cortical regions, in all four patients. We believe that these findings represent markers of abnormally increased cortical excitability. They are potential tools that may assist in localizing the epileptogenic zone.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States.,Regional Epilepsy Center, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Mark D Holmes
- Regional Epilepsy Center, Harborview Medical Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Fan Y, Dong L, Liu X, Wang H, Liu Y. Recent advances in the noninvasive detection of high-frequency oscillations in the human brain. Rev Neurosci 2020; 32:305-321. [PMID: 33661582 DOI: 10.1515/revneuro-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
In recent decades, a significant body of evidence based on invasive clinical research has showed that high-frequency oscillations (HFOs) are a promising biomarker for localization of the seizure onset zone (SOZ), and therefore, have the potential to improve postsurgical outcomes in patients with epilepsy. Emerging clinical literature has demonstrated that HFOs can be recorded noninvasively using methods such as scalp electroencephalography (EEG) and magnetoencephalography (MEG). Not only are HFOs considered to be a useful biomarker of the SOZ, they also have the potential to gauge disease severity, monitor treatment, and evaluate prognostic outcomes. In this article, we review recent clinical research on noninvasively detected HFOs in the human brain, with a focus on epilepsy. Noninvasively detected scalp HFOs have been investigated in various types of epilepsy. HFOs have also been studied noninvasively in other pathologic brain disorders, such as migraine and autism. Herein, we discuss the challenges reported in noninvasive HFO studies, including the scarcity of MEG and high-density EEG equipment in clinical settings, low signal-to-noise ratio, lack of clinically approved automated detection methods, and the difficulty in differentiating between physiologic and pathologic HFOs. Additional studies on noninvasive recording methods for HFOs are needed, especially prospective multicenter studies. Further research is fundamental, and extensive work is needed before HFOs can routinely be assessed in clinical settings; however, the future appears promising.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Dong
- Library of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Klotz KA, Sag Y, Schönberger J, Jacobs J. Scalp Ripples Can Predict Development of Epilepsy After First Unprovoked Seizure in Childhood. Ann Neurol 2020; 89:134-142. [PMID: 33070359 DOI: 10.1002/ana.25939] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Identification of children at risk of developing epilepsy after a first unprovoked seizure can be challenging. Interictal epileptiform discharges are associated with higher risk but have limited sensitivity and specificity. High frequency oscillations (HFOs) are newer biomarkers for epileptogenesis. We prospectively evaluated the predictive value of HFOs for developing epilepsy in scalp electroencephalogram (EEG) of children after a first unprovoked seizure. METHODS After their first seizure, 56 children were followed prospectively over 12 months and then grouped in "epilepsy" or "no epilepsy." Initial EEGs were visually analyzed for spikes, spike ripples, and ripples. Inter-group comparisons of spike-rates and HFO-rates were done by Mann-Whitney U test. Predictive values and optimal thresholds were calculated by receiver operating characteristic (ROC) curves. RESULTS In the epilepsy group (n = 26, 46%), mean rates of ripples (0.3 vs 0.09 / minute, p < 0.0001) and spike ripples (0.6 vs 0.06 / minute, p < 0.05) were significantly higher, with no difference in spike rates (1.7 vs 3.0 / minute, p = 0.38). Of those 3 markers, ripples showed the best predictive value (area under the curve [AUC]ripples = 0.88). The optimal threshold for ripples was calculated to be ≥ 0.125 / minute with a sensitivity of 87% and specificity of 85%. Ripple rates were negatively correlated to days passing before epilepsy-diagnosis (R = -0.59, p < 0.0001) and time to a second seizure (R = -0.64, 95% confidence interval [CI] = -0.77 to 0.43, p < 0.0001). INTERPRETATION We could show that in a cohort of children with a first unprovoked seizure, ripples predict the development of epilepsy better than spikes or spike ripples and might be useful biomarkers in the estimation of prognosis and question of treatment. ANN NEUROL 2021;89:134-142.
Collapse
Affiliation(s)
- Kerstin A Klotz
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yusuf Sag
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Schönberger
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Section of Pediatric Neurology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Jacobs J, Zijlmans M. HFO to Measure Seizure Propensity and Improve Prognostication in Patients With Epilepsy. Epilepsy Curr 2020; 20:338-347. [PMID: 33081501 PMCID: PMC7818207 DOI: 10.1177/1535759720957308] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The study of high frequency oscillations (HFO) in the electroencephalogram (EEG)
as biomarkers of epileptic activity has merely focused on their spatial location
and relationship to the epileptogenic zone. It has been suggested in several
ways that the amount of HFO at a certain point in time may reflect the disease
activity or severity. This could be clinically useful in several ways,
especially as noninvasive recording of HFO appears feasible. We grouped the
potential hypotheses into 4 categories: (1) HFO as biomarkers to predict the
development of epilepsy; (2) HFO as biomarkers to predict the occurrence of
seizures; (3) HFO as biomarkers linked to the severity of epilepsy, and (4) HFO
as biomarkers to evaluate outcome of treatment. We will review the literature
that addresses these 4 hypotheses and see to what extent HFO can be used to
measure seizure propensity and help determine prognosis of this unpredictable
disease.
Collapse
Affiliation(s)
- Julia Jacobs
- 157744Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Maeike Zijlmans
- 36512UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| |
Collapse
|
25
|
Tsuchiya H, Endoh F, Akiyama T, Matsuhashi M, Kobayashi K. Longitudinal correspondence of epilepsy and scalp EEG fast (40-200 Hz) oscillations in pediatric patients with tuberous sclerosis complex. Brain Dev 2020; 42:663-674. [PMID: 32631641 DOI: 10.1016/j.braindev.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Epilepsy associated with tuberous sclerosis complex (TSC) has very complex clinical characteristics. Scalp electroencephalogram (EEG) fast (40-200 Hz) oscillations (FOs) were recently suggested to indicate epilepsy severity. Epileptic FOs may undergo age-dependent longitudinal change in individual patients, however, and the typical pattern of such change is not yet fully clarified. We therefore investigated the age-related correspondence between clinical courses and FOs in pediatric patients with TSC-associated epilepsy. SUBJECTS AND METHODS FOs were semi-automatically detected from scalp sleep EEG data recorded from 23 children (15 boys, 8 girls; initial data obtained at <10 years of age) with TSC-associated epilepsy. RESULTS The number of FOs per patient that were associated with spikes was significantly greater than that of FOs unassociated with spikes (median 145 and 5, respectively; p = 0.0001 by the Wilcoxon signed-rank test). In the eight patients who had West syndrome (WS) in infancy, FOs associated with spikes were abundant during the WS period prior to adrenocorticotropic hormone therapy, with significantly greater numbers of FOs compared to the post-WS period (median 242 and 0, respectively; p = 0.0078). As there was no such time-dependent difference regarding FOs unassociated with spikes, FOs associated with spikes were identified as epileptic. The detected FOs included both gamma and ripple oscillations with no consistent age-dependent shifts in dominant frequency. There were no apparent age-related changes in FO duration. CONCLUSIONS Epileptic scalp FOs are confirmed to correspond to severity of epileptic encephalopathy, particularly in WS, even during the long-term evolutional courses of TSC-associated epilepsy.
Collapse
Affiliation(s)
- Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Fumika Endoh
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan; Department of Child Neurology, NHO Minami-Okayama Medical Center, Okayama, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
26
|
Gerner N, Thomschewski A, Marcu A, Trinka E, Höller Y. Pitfalls in Scalp High-Frequency Oscillation Detection From Long-Term EEG Monitoring. Front Neurol 2020; 11:432. [PMID: 32582002 PMCID: PMC7280487 DOI: 10.3389/fneur.2020.00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Intracranially recorded high-frequency oscillations (>80 Hz) are considered a candidate epilepsy biomarker. Recent studies claimed their detectability on the scalp surface. We aimed to investigate the applicability of high-frequency oscillation analysis to routine surface EEG obtained at an epilepsy monitoring unit. Methods: We retrospectively analyzed surface EEGs of 18 patients with focal epilepsy and six controls, recorded during sleep under maximal medication withdrawal. As a proof of principle, the occurrence of motor task-related events during wakefulness was analyzed in a subsample of six patients with seizure- or syncope-related motor symptoms. Ripples (80-250 Hz) and fast ripples (>250 Hz) were identified by semi-automatic detection. Using semi-parametric statistics, differences in spontaneous and task-related occurrence rates were examined within subjects and between diagnostic groups considering the factors diagnosis, brain region, ripple type, and task condition. Results: We detected high-frequency oscillations in 17 out of 18 patients and in four out of six controls. Results did not show statistically significant differences in the mean rates of event occurrences, neither regarding the laterality of the epileptic focus, nor with respect to active and inactive task conditions, or the moving hand laterality. Significant differences in general spontaneous incidence [WTS(1) = 9.594; p = 0.005] that indicated higher rates of fast ripples compared to ripples, notably in patients with epilepsy compared to the control group, may be explained by variations in data quality. Conclusion: The current analysis methods are prone to biases. A common agreement on a standard operating procedure is needed to ensure reliable and economic detection of high-frequency oscillations.
Collapse
Affiliation(s)
- Nathalie Gerner
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Aljoscha Thomschewski
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Mathematics, Paris-Lodron University of Salzburg, Salzburg, Austria,*Correspondence: Aljoscha Thomschewski
| | - Adrian Marcu
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian-Doppler Medical Centre, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
27
|
Xiang J, Maue E, Fan Y, Qi L, Mangano FT, Greiner H, Tenney J. Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy. Brain Commun 2020; 2:fcaa036. [PMID: 32954294 PMCID: PMC7425348 DOI: 10.1093/braincomms/fcaa036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 01/15/2023] Open
Abstract
Intracranial studies provide solid evidence that high-frequency brain signals are a new biomarker for epilepsy. Unfortunately, epileptic (pathological) high-frequency signals can be intermingled with physiological high-frequency signals making these signals difficult to differentiate. Recent success in non-invasive detection of high-frequency brain signals opens a new avenue for distinguishing pathological from physiological high-frequency signals. The objective of the present study is to characterize pathological and physiological high-frequency signals at source levels by using kurtosis and skewness analyses. Twenty-three children with medically intractable epilepsy and age-/gender-matched healthy controls were studied using magnetoencephalography. Magnetoencephalographic data in three frequency bands, which included 2–80 Hz (the conventional low-frequency signals), 80–250 Hz (ripples) and 250–600 Hz (fast ripples), were analysed. The kurtosis and skewness of virtual electrode signals in eight brain regions, which included left/right frontal, temporal, parietal and occipital cortices, were calculated and analysed. Differences between epilepsy and controls were quantitatively compared for each cerebral lobe in each frequency band in terms of kurtosis and skewness measurements. Virtual electrode signals from clinical epileptogenic zones and brain areas outside of the epileptogenic zones were also compared with kurtosis and skewness analyses. Compared to controls, patients with epilepsy showed significant elevation in kurtosis and skewness of virtual electrode signals. The spatial and frequency patterns of the kurtosis and skewness of virtual electrode signals among the eight cerebral lobes in three frequency bands were also significantly different from that of the controls (2–80 Hz, P < 0.001; 80–250 Hz, P < 0.00001; 250–600 Hz, P < 0.0001). Compared to signals from non-epileptogenic zones, virtual electrode signals from epileptogenic zones showed significantly altered kurtosis and skewness (P < 0.001). Compared to normative data from the control group, aberrant virtual electrode signals were, for each patient, more pronounced in the epileptogenic lobes than in other lobes(kurtosis analysis of virtual electrode signals in 250–600 Hz; odds ratio = 27.9; P < 0.0001). The kurtosis values of virtual electrode signals in 80–250 and 250–600 Hz showed the highest sensitivity (88.23%) and specificity (89.09%) for revealing epileptogenic lobe, respectively. The combination of virtual electrode and kurtosis/skewness measurements provides a new quantitative approach to distinguishing pathological from physiological high-frequency signals for paediatric epilepsy. Non-invasive identification of pathological high-frequency signals may provide novel important information to guide clinical invasive recordings and direct surgical treatment of epilepsy.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ellen Maue
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yuyin Fan
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lei Qi
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Neurosurgery, Beijing Fengtai Hospital, Beijing 100071, China
| | - Francesco T Mangano
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hansel Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffrey Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
28
|
High-frequency oscillations in a spectrum of pediatric epilepsies characterized by sleep-activated spikes in scalp EEG. Clin Neurophysiol 2019; 130:1971-1980. [DOI: 10.1016/j.clinph.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
|
29
|
Cox R, Rüber T, Staresina BP, Fell J. Heterogeneous profiles of coupled sleep oscillations in human hippocampus. Neuroimage 2019; 202:116178. [PMID: 31505272 PMCID: PMC6853182 DOI: 10.1016/j.neuroimage.2019.116178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations. Sleep oscillations in human hippocampus exhibit cross-frequency coupling during non-rapid eye movement sleep Coupling occurs between various frequency pairs, including slow oscillation, delta, theta, spindle, beta, and ripple bands Oscillatory organization varies between hippocampus and scalp, sites along the hippocampal axis, and individuals
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn, Germany.
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn, Germany; Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
30
|
van Klink N, Mooij A, Huiskamp G, Ferrier C, Braun K, Hillebrand A, Zijlmans M. Simultaneous MEG and EEG to detect ripples in people with focal epilepsy. Clin Neurophysiol 2019; 130:1175-1183. [PMID: 30871799 DOI: 10.1016/j.clinph.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We studied ripples (80-250 Hz) simultaneously recorded in electroencephalography (EEG) and magnetoencephalography (MEG) to evaluate the differences. METHODS Simultaneous EEG and MEG were recorded in 30 patients with drug resistant focal epilepsy. Ripples were automatically detected and visually checked in virtual channels throughout the cortex. The number and location of ripples in EEG and MEG were compared to each other and to a region of interest (ROI) defined by clinically available information. RESULTS Eleven patients showed ripples in both MEG and EEG, 11 only in EEG and one only in MEG. Twenty-four percent of the ripples occurred simultaneously in EEG and MEG, 71% only in EEG, and 5% only in MEG. Three patients without spikes in EEG showed EEG ripples. Ripple localization was concordant with the ROI in 80% of patients with MEG ripples, as opposed to 62% full or partial concordance for EEG ripples. With the optimal threshold for localizing the ROI, sensitivity and specificity were more than 80%. CONCLUSIONS Ripples in MEG are less frequent but more specific and sensitive for the region of interest than ripples in EEG. Ripples in EEG can exist without spikes in the EEG. SIGNIFICANCE Ripples in MEG and EEG provide complementary information.
Collapse
Affiliation(s)
- Nicole van Klink
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.
| | - Anne Mooij
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Geertjan Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Cyrille Ferrier
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Kees Braun
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Maeike Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands
| |
Collapse
|
31
|
Large-Scale 3-5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy. eNeuro 2019; 6:eN-CFN-0494-18. [PMID: 30783615 PMCID: PMC6378326 DOI: 10.1523/eneuro.0494-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/12/2023] Open
Abstract
Large-scale slow oscillations allow the integration of neuronal activity across brain regions during sensory or cognitive processing. However, evidence that this form of coding also holds for pathological networks, such as for distributed networks in epileptic disorders, does not yet exist. Here, we show in a mouse model of unilateral hippocampal epilepsy that epileptic fast ripples generated in the neocortex distant from the primary focus occur during transient trains of interictal epileptic discharges. During these epileptic paroxysms, local phase-locking of neuronal firing and a phase-amplitude coupling of the epileptic discharges over a slow oscillation at 3-5 Hz are detected. Furthermore, the buildup of the slow oscillation begins in the bihippocampal network that includes the focus, which synchronizes and drives the activity across the large-scale epileptic network into the frontal cortex. This study provides the first functional description of the emergence of neocortical fast ripples in hippocampal epilepsy and shows that cross-frequency coupling might be a fundamental mechanism underlying the spreading of epileptic activity.
Collapse
|
32
|
Thomschewski A, Hincapié AS, Frauscher B. Localization of the Epileptogenic Zone Using High Frequency Oscillations. Front Neurol 2019; 10:94. [PMID: 30804887 PMCID: PMC6378911 DOI: 10.3389/fneur.2019.00094] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023] Open
Abstract
For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Ana-Sofía Hincapié
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Abstract
Electroencephalographic (EEG) investigations are crucial in the diagnosis and management of patients with focal epilepsies. EEG may reveal different interictal epileptiform discharges (IEDs: abnormal spikes, sharp waves). The EEG visibility of a spike depends on the surface area of cortex involved (>10cm2) and the brain localization of cortical generators. Regions generating IEDs (defining the "irritative zone") are not necessarily equivalent to the seizure onset zone. Focal seizures are dynamic processes originating from one or several brain regions (that generate fast oscillations and are called the epileptogenic zone) before spreading to other structures (that generate lower frequency oscillations and are called the propagation zone). Several factors limit the expression of seizures on scalp EEG, such as the area involved, degree of synchronization, and depth of the cortical generators. Different scalp EEG seizure onset patterns may be observed: fast discharge, background flattening, rhythmic spikes, sinusoidal discharge, or sharp activity. However, to a large extent EEG changes are linked to seizure propagation. Finally, in the context of presurgical evaluation, the combination of interictal and ictal EEG features is crucial to provide an optimal hypothesis concerning the epileptogenic zone.
Collapse
Affiliation(s)
- Stanislas Lagarde
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France; Department of Clinical Neurophysiology, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France; Department of Clinical Neurophysiology, Timone Hospital, Marseille, France.
| |
Collapse
|
34
|
Mooij AH, Frauscher B, Goemans SAM, Huiskamp GJM, Braun KPJ, Zijlmans M. Ripples in scalp EEGs of children: co-occurrence with sleep-specific transients and occurrence across sleep stages. Sleep 2018; 41:5076452. [DOI: 10.1093/sleep/zsy169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Anne H Mooij
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine and Center for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Sophie A M Goemans
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|