1
|
Wu J, Ji Y, Qu H, Zuo S, Liang J, Su J, Wang Q, Yan G, Ding G. Transcranial magnetic stimulation of the right inferior frontal gyrus impairs bilinguals' performance in language-switching tasks. Cognition 2024; 254:105963. [PMID: 39340870 DOI: 10.1016/j.cognition.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (rIFG), a region typically associated with inhibition, is activated during language-switching tasks. However, it remains unclear whether the rIFG plays a causal or epiphenomenal role in this process. To explore the role of the rIFG, the present study employed transcranial magnetic stimulation (TMS) to modulate its neural activity and evaluate subsequent behavior in bilinguals. Specifically, twenty-nine Chinese-English bilinguals participated in the study and performed picture-naming tasks in single- and dual-language contexts after receiving sham stimulation (Sham), continuous theta burst stimulation (cTBS), or intermittent theta burst stimulation (iTBS) over the rIFG in three separate visits. Sham served as a control, with cTBS and iTBS intended to decrease and increase cortical excitability, respectively. We found that, compared to Sham, cTBS led to larger asymmetric switching costs and smaller asymmetric mixing costs, whereas iTBS resulted only in smaller asymmetric mixing costs. These findings suggest that cTBS targeting the rIFG likely impairs both local and global control. However, iTBS applied to the rIFG alone may not necessarily enhance language control mechanisms and could even hinder global control. Moreover, exploratory analyses found pronounced TMS-induced impairments in less balanced bilinguals, implying their potentially greater reliance on bilingual language control. Overall, this study is the first to suggest a causal role of the rIFG in language switching.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Yannan Ji
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Clinical College, Chengde Medical University, Chengde 067000, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hongfu Qu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Shuyue Zuo
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Jinsong Liang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Juan Su
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Qiping Wang
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guoli Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00206-4. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Enhancement of phonemic verbal fluency in multilingual young adults by transcranial random noise stimulation. Neuropsychologia 2024; 198:108882. [PMID: 38599569 DOI: 10.1016/j.neuropsychologia.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Several studies have analyzed the effects of transcranial direct current stimulation on verbal fluency tasks in non-clinical populations. Nevertheless, the reported effects on verbal fluency are inconsistent. In addition, the effect of other techniques such as transcranial random noise stimulation (tRNS) on verbal fluency enhancement has yet to be studied in healthy multilingual populations. This study aims to explore the effects of tRNS on verbal fluency in healthy multilingual individuals. Fifty healthy multilingual (Spanish, English and Basque) adults were randomly assigned to a tRNS or sham group. Electrodes were placed on the left dorsolateral prefrontal cortex and left inferior frontal gyrus. All participants performed phonemic and semantic verbal fluency tasks before, during (online assessment) and immediately after (offline assessment) stimulation in three different languages. The results showed significantly better performance by participants who received tRNS in the phonemic verbal fluency tasks in Spanish (in the online and offline assessment) and English (in the offline assessment). No differences between conditions were found in Basque nor semantic verbal fluency. These findings suggests that tRNS on the left prefrontal cortex could help improve phonemic, yet not semantic, fluency in healthy multilingual adults.
Collapse
Affiliation(s)
| | - Leire Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | | | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
4
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Gallo F, DeLuca V, Prystauka Y, Voits T, Rothman J, Abutalebi J. Bilingualism and Aging: Implications for (Delaying) Neurocognitive Decline. Front Hum Neurosci 2022; 16:819105. [PMID: 35185498 PMCID: PMC8847162 DOI: 10.3389/fnhum.2022.819105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
As a result of advances in healthcare, the worldwide average life expectancy is steadily increasing. However, this positive trend has societal and individual costs, not least because greater life expectancy is linked to higher incidence of age-related diseases, such as dementia. Over the past few decades, research has isolated various protective "healthy lifestyle" factors argued to contribute positively to cognitive aging, e.g., healthy diet, physical exercise and occupational attainment. The present article critically reviews neuroscientific evidence for another such factor, i.e., speaking multiple languages. Moreover, with multiple societal stakeholders in mind, we contextualize and stress the importance of the research program that seeks to uncover and understand potential connections between bilingual language experience and cognitive aging trajectories, inclusive of the socio-economic impact it can have. If on the right track, this is an important line of research because bilingualism has the potential to cross-over socio-economic divides to a degree other healthy lifestyle factors currently do not and likely cannot.
Collapse
Affiliation(s)
- Federico Gallo
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
| | - Vincent DeLuca
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Yanina Prystauka
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Toms Voits
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jason Rothman
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
- Centro de Investigación Nebrija en Cognición (CINC), University Nebrija, Madrid, Spain
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Vita-Salute San Raffaele University, Milan, Italy
- PoLaR Lab, AcqVA Aurora Centre, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Radman N, Jost L, Dorood S, Mancini C, Annoni JM. Language distance modulates cognitive control in bilinguals. Sci Rep 2021; 11:24131. [PMID: 34916553 PMCID: PMC8677725 DOI: 10.1038/s41598-021-02973-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Linguistic processes in the bilingual brain are partially shared across languages, and the degree of neural overlap between the languages is influenced by several factors, including the age of acquisition, relative language proficiency, and immersion. There is limited evidence on the role of linguistic distance on the performance of the language control as well as domain-general cognitive control systems. The present study aims at exploring whether being bilingual in close and distant language pairs (CLP and DLP) influences language control and domain-general cognitive processes. We recruited two groups of DLP (Persian-English) and CLP (French-English) bilinguals. Subjects performed language nonswitching and switching picture-naming tasks and a nonlinguistic switching task while EEG data were recorded. Behaviorally, CLP bilinguals showed a lower cognitive cost than DLP bilinguals, reflected in faster reaction times both in language switching (compared to nonswitching) and nonlinguistic switching. ERPs showed differential involvement of cognitive control regions between the CLP and DLP groups during linguistic switching vs. nonswitching at 450 to 515 ms poststimulus presentation. Moreover, there was a difference between CLP and DLP groups from 40 to 150 ms in the nonlinguistic task. Our electrophysiological results confirm a stronger involvement of language control and domain-general cognitive control regions in CLP bilinguals.
Collapse
Affiliation(s)
- Narges Radman
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Opposite the ARAJ, Artesh Highway, Aghdassieh, Tehran, 1956836484, Iran.
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Lea Jost
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Setareh Dorood
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Opposite the ARAJ, Artesh Highway, Aghdassieh, Tehran, 1956836484, Iran
| | - Christian Mancini
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Eick CM, Ambrus GG, Kovács G. Inhibition of the occipital face area modulates the electrophysiological signals of face familiarity: A combined cTBS-EEG study. Cortex 2021; 141:156-167. [PMID: 34052777 DOI: 10.1016/j.cortex.2021.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The occipital face area (OFA) is hierarchically one of the first stages of the face processing network. It has originally been thought to be involved in early, structural processing steps, but currently more and more studies challenge this view and propose that it also takes part in higher level face processing, such as identification and recognition. Here we tested whether the OFA is involved in the initial steps of recognition memory and plays a causal role in the differential processing of familiar and unfamiliar faces. We used an offline, inhibitory continuous theta-burst stimulation (cTBS) protocol over the right OFA and the vertex as control site. Electroencephalographic (EEG) recording of event-related potentials (ERPs), elicited by visually presented familiar (famous) and unfamiliar faces was performed before and after stimulation. We observed a difference in ERPs for famous and unfamiliar faces in a time-window corresponding to the N250 component. Importantly, this difference was significantly increased by cTBS of the right OFA, suggesting its causal role in the differential processing of familiar and unfamiliar faces. The enhancement occurred focally, at electrodes close to the right hemispheric cTBS site, as well as over similar occipito-temporal sites of the contralateral hemisphere. To the best of our knowledge, this is the first study showing the causal role of the rOFA in the differential processing of familiar and unfamiliar faces, using combined cTBS and EEG recording methods. These results are discussed with respect to the nature of familiar face representations, supported by an extensive, bilateral network.
Collapse
Affiliation(s)
- Charlotta M Eick
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Germany.
| | - Géza G Ambrus
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Germany
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Germany
| |
Collapse
|