1
|
Kenyon KH, Boonstra F, Noffs G, Morgan AT, Vogel AP, Kolbe S, Van Der Walt A. The characteristics and reproducibility of motor speech functional neuroimaging in healthy controls. Front Hum Neurosci 2024; 18:1382102. [PMID: 39171097 PMCID: PMC11335534 DOI: 10.3389/fnhum.2024.1382102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Functional magnetic resonance imaging (fMRI) can improve our understanding of neural processes subserving motor speech function. Yet its reproducibility remains unclear. This study aimed to evaluate the reproducibility of fMRI using a word repetition task across two time points. Methods Imaging data from 14 healthy controls were analysed using a multi-level general linear model. Results Significant activation was observed during the task in the right hemispheric cerebellar lobules IV-V, right putamen, and bilateral sensorimotor cortices. Activation between timepoints was found to be moderately reproducible across time in the cerebellum but not in other brain regions. Discussion Preliminary findings highlight the involvement of the cerebellum and connected cerebral regions during a motor speech task. More work is needed to determine the degree of reproducibility of speech fMRI before this could be used as a reliable marker of changes in brain activity.
Collapse
Affiliation(s)
- Katherine H. Kenyon
- Department of Neuroscience, School of Translational Medicine, Melbourne, VIC, Australia
| | - Frederique Boonstra
- Department of Neuroscience, School of Translational Medicine, Melbourne, VIC, Australia
| | - Gustavo Noffs
- Department of Neuroscience, School of Translational Medicine, Melbourne, VIC, Australia
- Redenlab Inc., Melbourne, VIC, Australia
| | - Angela T. Morgan
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Audiology and Speech Pathology, Faculty of Medicine, Dentistry and Health Sciences, Melbourne School of Health Sciences, University of Melbourne, Carlton, VIC, Australia
| | - Adam P. Vogel
- Redenlab Inc., Melbourne, VIC, Australia
- Department of Audiology and Speech Pathology, Parkville, VIC, Australia
| | - Scott Kolbe
- Department of Neuroscience, School of Translational Medicine, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Schiller B, Sperl MFJ, Kleinert T, Nash K, Gianotti LRR. EEG Microstates in Social and Affective Neuroscience. Brain Topogr 2024; 37:479-495. [PMID: 37523005 PMCID: PMC11199304 DOI: 10.1007/s10548-023-00987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Social interactions require both the rapid processing of multifaceted socio-affective signals (e.g., eye gaze, facial expressions, gestures) and their integration with evaluations, social knowledge, and expectations. Researchers interested in understanding complex social cognition and behavior face a "black box" problem: What are the underlying mental processes rapidly occurring between perception and action and why are there such vast individual differences? In this review, we promote electroencephalography (EEG) microstates as a powerful tool for both examining socio-affective states (e.g., processing whether someone is in need in a given situation) and identifying the sources of heterogeneity in socio-affective traits (e.g., general willingness to help others). EEG microstates are identified by analyzing scalp field maps (i.e., the distribution of the electrical field on the scalp) over time. This data-driven, reference-independent approach allows for identifying, timing, sequencing, and quantifying the activation of large-scale brain networks relevant to our socio-affective mind. In light of these benefits, EEG microstates should become an indispensable part of the methodological toolkit of laboratories working in the field of social and affective neuroscience.
Collapse
Affiliation(s)
- Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Matthias F J Sperl
- Department of Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg and Giessen (Research Campus Central Hessen), Marburg, Germany
| | - Tobias Kleinert
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Zhao S, Dai G, Li J, Zhu X, Huang X, Li Y, Tan M, Wang L, Fang P, Chen X, Yan N, Liu H. An interpretable model based on graph learning for diagnosis of Parkinson's disease with voice-related EEG. NPJ Digit Med 2024; 7:3. [PMID: 38182737 PMCID: PMC10770376 DOI: 10.1038/s41746-023-00983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) exhibits significant clinical heterogeneity, presenting challenges in the identification of reliable electroencephalogram (EEG) biomarkers. Machine learning techniques have been integrated with resting-state EEG for PD diagnosis, but their practicality is constrained by the interpretable features and the stochastic nature of resting-state EEG. The present study proposes a novel and interpretable deep learning model, graph signal processing-graph convolutional networks (GSP-GCNs), using event-related EEG data obtained from a specific task involving vocal pitch regulation for PD diagnosis. By incorporating both local and global information from single-hop and multi-hop networks, our proposed GSP-GCNs models achieved an averaged classification accuracy of 90.2%, exhibiting a significant improvement of 9.5% over other deep learning models. Moreover, the interpretability analysis revealed discriminative distributions of large-scale EEG networks and topographic map of microstate MS5 learned by our models, primarily located in the left ventral premotor cortex, superior temporal gyrus, and Broca's area that are implicated in PD-related speech disorders, reflecting our GSP-GCN models' ability to provide interpretable insights identifying distinctive EEG biomarkers from large-scale networks. These findings demonstrate the potential of interpretable deep learning models coupled with voice-related EEG signals for distinguishing PD patients from healthy controls with accuracy and elucidating the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Shuzhi Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiyan Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingdan Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Fang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Lucarini V, Alouit A, Yeh D, Le Coq J, Savatte R, Charre M, Louveau C, Houamri MB, Penaud S, Gaston-Bellegarde A, Rio S, Drouet L, Elbaz M, Becchio J, Pourchet S, Pruvost-Robieux E, Marchi A, Moyal M, Lefebvre A, Chaumette B, Grice M, Lindberg PG, Dupin L, Piolino P, Lemogne C, Léger D, Gavaret M, Krebs MO, Iftimovici A. Neurophysiological explorations across the spectrum of psychosis, autism, and depression, during wakefulness and sleep: protocol of a prospective case-control transdiagnostic multimodal study (DEMETER). BMC Psychiatry 2023; 23:860. [PMID: 37990173 PMCID: PMC10662684 DOI: 10.1186/s12888-023-05347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Quantitative electroencephalography (EEG) analysis offers the opportunity to study high-level cognitive processes across psychiatric disorders. In particular, EEG microstates translate the temporal dynamics of neuronal networks throughout the brain. Their alteration may reflect transdiagnostic anomalies in neurophysiological functions that are impaired in mood, psychosis, and autism spectrum disorders, such as sensorimotor integration, speech, sleep, and sense of self. The main questions this study aims to answer are as follows: 1) Are EEG microstate anomalies associated with clinical and functional prognosis, both in resting conditions and during sleep, across psychiatric disorders? 2) Are EEG microstate anomalies associated with differences in sensorimotor integration, speech, sense of self, and sleep? 3) Can the dynamic of EEG microstates be modulated by a non-drug intervention such as light hypnosis? METHODS This prospective cohort will include a population of adolescents and young adults, aged 15 to 30 years old, with ultra-high-risk of psychosis (UHR), first-episode psychosis (FEP), schizophrenia (SCZ), autism spectrum disorder (ASD), and major depressive disorder (MDD), as well as healthy controls (CTRL) (N = 21 × 6), who will be assessed at baseline and after one year of follow-up. Participants will undergo deep phenotyping based on psychopathology, neuropsychological assessments, 64-channel EEG recordings, and biological sampling at the two timepoints. At baseline, the EEG recording will also be coupled to a sensorimotor task and a recording of the characteristics of their speech (prosody and turn-taking), a one-night polysomnography, a self-reference effect task in virtual reality (only in UHR, FEP, and CTRL). An interventional ancillary study will involve only healthy controls, in order to assess whether light hypnosis can modify the EEG microstate architecture in a direction opposite to what is seen in disease. DISCUSSION This transdiagnostic longitudinal case-control study will provide a multimodal neurophysiological assessment of clinical dimensions (sensorimotor integration, speech, sleep, and sense of self) that are disrupted across mood, psychosis, and autism spectrum disorders. It will further test the relevance of EEG microstates as dimensional functional biomarkers. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT06045897.
Collapse
Affiliation(s)
- Valeria Lucarini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Anaëlle Alouit
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
| | - Delphine Yeh
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Jeanne Le Coq
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Romane Savatte
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Mylène Charre
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Cécile Louveau
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Meryem Benlaifa Houamri
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Sylvain Penaud
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Alexandre Gaston-Bellegarde
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Stéphane Rio
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Laurent Drouet
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Maxime Elbaz
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Jean Becchio
- Collège International de Thérapies d'orientation de l'Attention et de la Conscience (CITAC), Paris, France
| | - Sylvain Pourchet
- Collège International de Thérapies d'orientation de l'Attention et de la Conscience (CITAC), Paris, France
| | - Estelle Pruvost-Robieux
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
- Service de Neurophysiologie Clinique, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Angela Marchi
- Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Mylène Moyal
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Aline Lefebvre
- Department of Child and Adolescent Psychiatry, Fondation Vallee, UNIACT Neurospin CEA - INSERM UMR 1129, Universite Paris Saclay, Gentilly, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Martine Grice
- IfL-Phonetics, University of Cologne, Cologne, Germany
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
| | - Lucile Dupin
- INCC UMR 8002, CNRS, Université Paris Cité, Paris, F-75006, France
| | - Pascale Piolino
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Cédric Lemogne
- Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, Université Paris Cité and Université Sorbonne Paris Nord, Paris, France
| | - Damien Léger
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
- VIFASOM, ERC 7330, Université Paris Cité, Paris, France
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
- Service de Neurophysiologie Clinique, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France.
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France.
| |
Collapse
|