1
|
Teng C, Cong L, Tian Q, Liu K, Cheng S, Zhang T, Dang W, Hou Y, Ma J, Hui D, Hu W. EEG microstate in people with different degrees of fear of heights during virtual high-altitude exposure. Brain Res Bull 2024; 218:111112. [PMID: 39486463 DOI: 10.1016/j.brainresbull.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Previous neuroimaging studies based on electroencephalography (EEG) microstate analysis have identified abnormal neural electric activity in patients with psychiatric diseases. However, the microstate information in individuals with different degrees of fear of heights (FoH) remains unknown so far. The aim of the study was therefore to explore the changes of EEG microstate characteristics in different FoH individuals when exposed to high-altitude stimulated by virtual reality (VR). First, acrophobia questionnaire (AQ) before the experiment and 32-channel EEG signals under the virtual high-altitude exposure were collected from 69 subjects. Second, each subject was divided into one of three levels of FoH including no-FoH, mild or moderate FoH (m-FoH) and severe FoH (s-FoH) groups according to their AQ scores. Third, using microstate analysis, we transformed EEG data into sequences of characteristic topographic maps and computed EEG microstate features including microstate basic parameters, microstate sequences complexity and microstate energy. Finally, the extracted features as inputs were sent to train and test an support vector machine (SVM) for classifying different FoH groups. The results demonstrated that five types of microstates (labeled as A, B, C, D and F) were identified across all subjects, of which microstates A-D resembled the four typical microstate classes and microstate F was a non-canonical microstate. Significantly decreased occurrence, coverage and duration of microstate F and transition probabilities from other microstates to microstate F in m-FoH and s-FoH groups were observed compared to no-FoH group. It was also demonstrated that both m-FoH and s-FoH groups showed a notable reduction in sample entropy and Lempel-Ziv complexity. Moreover, energies of microstate D for m-FoH group and microstate B for s-FoH group in right parietal, parietooccipital and occipital regions exhibited prominent decreases as comparison to people without FoH. But, no significant differences were found between m-FoH and s-FoH groups. Additionally, the results indicated that AQ-anxiety scores were negatively correlated with microstate basic metrics as well as microstate energy. For classification, the performance of SVM reached a relatively high accuracy of 89 % for distinguishing no-FoH from m-FoH. In summary, the findings highlight the alterations of EEG microstates in people with fear of heights induced by virtual high-altitude, reflecting potentially underlying abnormalities in the allocation of neural assemblies. Therefore, the combination of EEG microstate analysis and VR may be a potential valuable approach for the diagnosis of fear of heights.
Collapse
Affiliation(s)
- Chaolin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qiumei Tian
- Department of Gastroenterology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ke Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Taihui Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weitao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajing Hou
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Duoduo Hui
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wendong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Wan W, Gu Z, Peng CK, Cui X. Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia. Brain Sci 2024; 14:487. [PMID: 38790465 PMCID: PMC11118442 DOI: 10.3390/brainsci14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Exploring the spatiotemporal dynamic patterns of multi-channel electroencephalography (EEG) is crucial for interpreting dementia and related cognitive decline. Spatiotemporal patterns of EEG can be described through microstate analysis, which provides a discrete approximation of the continuous electric field patterns generated by the brain cortex. Here, we propose a novel microstate spatiotemporal dynamic indicator, termed the microstate sequence non-randomness index (MSNRI). The essence of the method lies in initially generating a sequence of microstate transition patterns through state space compression of EEG data using microstate analysis. Following this, we assess the non-randomness of these microstate patterns using information-based similarity analysis. The results suggest that this MSNRI metric is a potential marker for distinguishing between health control (HC) and frontotemporal dementia (FTD) (HC vs. FTD: 6.958 vs. 5.756, p < 0.01), as well as between HC and populations with Alzheimer's disease (AD) (HC vs. AD: 6.958 vs. 5.462, p < 0.001). Healthy individuals exhibit more complex macroscopic structures and non-random spatiotemporal patterns of microstates, whereas dementia disorders lead to more random spatiotemporal patterns. Additionally, we extend the proposed method by integrating the Complementary Ensemble Empirical Mode Decomposition (CEEMD) method to explore spatiotemporal dynamic patterns of microstates at specific frequency scales. Moreover, we assessed the effectiveness of this innovative method in predicting cognitive scores. The results demonstrate that the incorporation of CEEMD-enhanced microstate dynamic indicators significantly improved the prediction accuracy of Mini-Mental State Examination (MMSE) scores (R2 = 0.940). The CEEMD-enhanced MSNRI method not only aids in the exploration of large-scale neural changes in populations with dementia but also offers a robust tool for characterizing the dynamics of EEG microstate transitions and their impact on cognitive function.
Collapse
Affiliation(s)
- Wang Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (W.W.); (Z.G.)
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (W.W.); (Z.G.)
| | - Chung-Kang Peng
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xingran Cui
- Center for Nonlinear Dynamics in Medicine, Southeast University, Nanjing 210096, China;
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Michel CM, Brechet L, Schiller B, Koenig T. Current State of EEG/ERP Microstate Research. Brain Topogr 2024; 37:169-180. [PMID: 38349451 PMCID: PMC10884048 DOI: 10.1007/s10548-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland.
| | - Lucie Brechet
- Department of Readaptation and Geriatrics, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Bastian Schiller
- Laboratory for Biological Psychology, Clinical Psychology, and Psychotherapy, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|