1
|
Yadegari F, Farahmand L, Esmaeili R, Zarinfam S, Majidzadeh-A K. Inter-BRCT linker is probably the most intolerant region of the BRCA1 BRCT domain. J Biomol Struct Dyn 2024; 42:5734-5746. [PMID: 37948190 DOI: 10.1080/07391102.2023.2274517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 11/12/2023]
Abstract
Pathogenic mutations in BRCA1 are associated with an increased risk of hereditary breast, ovarian, and some other cancers; however, the clinical significance of many mutations in this gene remains unknown (Variants of Unknown Significance/VUS). Since mutations in intolerant regions of a protein lead to dysfunction and pathogenicity, identifying these regions helps to predict the clinical importance of VUSs. This study aimed to identify intolerant regions of BRCA1 and understand the possible root of this susceptibility. Intolerant regions appear to carry more pathogenic mutations than expected due to their lower tolerance to missense variations. Therefore, we hypothesized that among the BRCA1 regions, the higher the mutation density, the greater the intolerance. Thus, pathogenic mutation density and regional intolerance scores were calculated to identify BRCA1-intolerant regions. To investigate the pathogenic mechanisms of missense-intolerant regions in BRCA1, transcription activation (TA) experiments and molecular dynamics (MD) simulations were also performed. The results showed that the RING domain, followed by the BRCT domain, has the highest density of pathogenic mutations. In the BRCT domain, a higher density of pathogenic mutations was observed in the inter-BRCT linker. Additionally, scores generated by Missense Tolerance Ratio-3D (MTR3D) and the Missense Tolerance Ratio consensus (MTRX) showed that the inter-BRCT linker is more intolerant than other regions of the BRCT domain. The MD results showed that mutations in the inter-BRCT linker led to cancer susceptibility, likely due to disruption of the interaction between BRCA1 and phosphopeptides. TA laboratory assays further supported the importance of the inter-BRCT linker.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Yanus GA, Savonevich EL, Sokolenko AP, Romanko AA, Ni VI, Bakaeva EK, Gorustovich OA, Bizin IV, Imyanitov EN. Founder vs. non-founder BRCA1/2 pathogenic alleles: the analysis of Belarusian breast and ovarian cancer patients and review of other studies on ethnically homogenous populations. Fam Cancer 2023; 22:19-30. [PMID: 35596902 DOI: 10.1007/s10689-022-00296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 01/13/2023]
Abstract
The spectrum of BRCA1/2 mutations demonstrates significant interethnic variations. We analyzed for the first time the entire BRCA1/2 coding region in 340 Belarusian cancer patients with clinical signs of BRCA1/2-related disease, including 168 women with bilateral and/or early-onset breast cancer (BC), 104 patients with ovarian cancer and 68 subjects with multiple primary malignancies involving BC and/or OC. BRCA1/2 pathogenic alleles were detected in 98 (29%) women, with 67 (68%) of these being represented by founder alleles. Systematic comparison with other relevant studies revealed that the founder effect observed in Belarus is among the highest estimates observed worldwide. These findings are surprising, given that the population of Belarus did not experience geographic or cultural isolation throughout history.
Collapse
Affiliation(s)
- G A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E L Savonevich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - A P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia. .,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.
| | - A A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia
| | - V I Ni
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E Kh Bakaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - O A Gorustovich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - I V Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia
| |
Collapse
|
3
|
ElBiad O, Laraqui A, El Boukhrissi F, Mounjid C, Lamsisi M, Bajjou T, Elannaz H, Lahlou AI, Kouach J, Benchekroune K, Oukabli M, Chahdi H, Ennaji MM, Tanz R, Sbitti Y, Ichou M, Ennibi K, Badaoui B, Sekhsokh Y. Prevalence of specific and recurrent/founder pathogenic variants in BRCA genes in breast and ovarian cancer in North Africa. BMC Cancer 2022; 22:208. [PMID: 35216584 PMCID: PMC8876448 DOI: 10.1186/s12885-022-09181-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Elucidation of specific and recurrent/founder pathogenic variants (PVs) in BRCA (BRCA1 and BRCA2) genes can make the genetic testing, for breast cancer (BC) and/or ovarian cancer (OC), affordable for developing nations. Methods To establish the knowledge about BRCA PVs and to determine the prevalence of the specific and recurrent/founder variants in BRCA genes in BC and/or OC women in North Africa, a systematic review was conducted in Morocco, Algeria, and Tunisia. Results Search of the databases yielded 25 relevant references, including eleven studies in Morocco, five in Algeria, and nine in Tunisia. Overall, 15 studies investigated both BRCA1 and BRCA2 genes, four studies examined the entire coding region of the BRCA1 gene, and six studies in which the analysis was limited to a few BRCA1 and/or BRCA2 exons. Overall, 76 PVs (44 in BRCA1 and32 in BRCA2) were identified in 196 BC and/or OC patients (129 BRCA1 and 67 BRCA2 carriers). Eighteen of the 76 (23.7%) PVs [10/44 (22.7%) in BRCA1 and 8/32 (25%) in BRCA2] were reported for the first time and considered to be novel PVs. Among those identified as unlikely to be of North African origin, the BRCA1 c.68_69del and BRCA1 c.5266dupC Jewish founder alleles and PVs that have been reported as recurrent/founder variants in European populations (ex: BRCA1 c.181T>G, BRCA1 c1016dupA). The most well characterized PVs are four in BRCA1 gene [c.211dupA (14.7%), c.798_799detTT (14%), c.5266dup (8.5%), c.5309G>T (7.8%), c.3279delC (4.7%)] and one in BRCA2 [c.1310_1313detAAGA (38.9%)]. The c.211dupA and c.5309G>T PVs were identified as specific founder variants in Tunisia and Morocco, accounting for 35.2% (19/54) and 20.4% (10/49) of total established BRCA1 PVs, respectively. c.798_799delTT variant was identified in 14% (18/129) of all BRCA1 North African carriers, suggesting a founder allele. A broad spectrum of recurrent variants including BRCA1 3279delC, BRCA1 c.5266dup and BRCA2 c.1310_1313detAAGA was detected in 42 patients. BRCA1 founder variants explain around 36.4% (47/129) of BC and outnumber BRCA2 founder variants by a ratio of ≈3:1. Conclusions Testing BC and/or OC patients for the panel of specific and recurrent/founder PVs might be the most cost-effective molecular diagnosis strategy.
Collapse
Affiliation(s)
- Oubaida ElBiad
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Rabat, Maroc. .,Unité de séquençage, Laboratoire de Virologie, Centre de Virologie, des Maladies Infectieuses et Tropicales, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc. .,Laboratoire de Biodiversité, Ecologie et Génome, Faculté des Sciences, Université Mohammed V, Rabat, Maroc.
| | - Abdelilah Laraqui
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Rabat, Maroc.,Unité de séquençage, Laboratoire de Virologie, Centre de Virologie, des Maladies Infectieuses et Tropicales, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc.,Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Fatima El Boukhrissi
- Laboratoire de Biochimie-Toxicologie, Hôpital Militaire Moulay Ismail Meknès, Faculté de Médecine et de Pharmacie, Université Sidi Mohamed Ben Abdellah, Fès, Maroc
| | - Chaimaa Mounjid
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Rabat, Maroc
| | - Maryame Lamsisi
- Laboratoire de Virologie, Microbiologie, Qualité, Biotechnologies/Ecotoxicologie et Biodiversité, Faculté des sciences et techniques, Mohammadia, Université Hassan II, Casa, Maroc
| | - Tahar Bajjou
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Rabat, Maroc
| | - Hicham Elannaz
- Unité de séquençage, Laboratoire de Virologie, Centre de Virologie, des Maladies Infectieuses et Tropicales, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc.,Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Amine Idriss Lahlou
- Unité de séquençage, Laboratoire de Virologie, Centre de Virologie, des Maladies Infectieuses et Tropicales, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc.,Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Jaouad Kouach
- Service de Gynécologie Obstétrique, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Khadija Benchekroune
- Service de Gynécologie Obstétrique, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Mohammed Oukabli
- Laboratoire d'Anatomopathologie, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Hafsa Chahdi
- Laboratoire d'Anatomopathologie, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Moulay Mustapha Ennaji
- Laboratoire de Virologie, Microbiologie, Qualité, Biotechnologies/Ecotoxicologie et Biodiversité, Faculté des sciences et techniques, Mohammadia, Université Hassan II, Casa, Maroc
| | - Rachid Tanz
- Service d'Oncologie Médicale, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Yassir Sbitti
- Service d'Oncologie Médicale, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Mohammed Ichou
- Service d'Oncologie Médicale, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Khalid Ennibi
- Unité de séquençage, Laboratoire de Virologie, Centre de Virologie, des Maladies Infectieuses et Tropicales, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc.,Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Bouabid Badaoui
- Laboratoire de Biodiversité, Ecologie et Génome, Faculté des Sciences, Université Mohammed V, Rabat, Maroc
| | - Yassine Sekhsokh
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Rabat, Maroc
| |
Collapse
|
4
|
Li H, Engel C, de la Hoya M, Peterlongo P, Yannoukakos D, Livraghi L, Radice P, Thomassen M, Hansen TVO, Gerdes AM, Nielsen HR, Caputo SM, Zambelli A, Borg A, Solano A, Thomas A, Parsons MT, Antoniou AC, Leslie G, Yang X, Chenevix-Trench G, Caldes T, Kwong A, Pedersen IS, Lautrup CK, John EM, Terry MB, Hopper JL, Southey MC, Andrulis IL, Tischkowitz M, Janavicius R, Boonen SE, Kroeldrup L, Varesco L, Hamann U, Vega A, Palmero EI, Garber J, Montagna M, Van Asperen CJ, Foretova L, Greene MH, Selkirk T, Moller P, Toland AE, Domchek SM, James PA, Thorne H, Eccles DM, Nielsen SM, Manoukian S, Pasini B, Caligo MA, Lazaro C, Kirk J, Wappenschmidt B, Spurdle AB, Couch FJ, Schmutzler R, Goldgar DE. Risks of breast and ovarian cancer for women harboring pathogenic missense variants in BRCA1 and BRCA2 compared with those harboring protein truncating variants. Genet Med 2022; 24:119-129. [PMID: 34906479 PMCID: PMC10170303 DOI: 10.1016/j.gim.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.
Collapse
Affiliation(s)
- Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, National Centre for Scientific Research "Demokritos", INRASTES Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, Athens, Greece
| | - Luca Livraghi
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy; University of Siena, Siena, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette R Nielsen
- Department of Clinical Genetics Sygehus Lillebaelt, Vejle Hospital, Vejle, Denmark
| | - Sandrine M Caputo
- Service de Génétique, Institut Curie, Paris, France; Paris Sciences and Lettres Research University, Paris, France
| | - Alberto Zambelli
- Medical Oncology Unit, AZIENDA SOCIO SANITARIA TERRITORIALE PAPA GIOVANNI XXIII, Bergamo, Italy
| | - Ake Borg
- Divisions of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Angela Solano
- INBIOMED, Faculty of Medicine, University of Buenos Aires, CONICET and Genotyping Laboratory, Department of Clinical Chemistry, CEMIC, Buenos Aires, Argentina
| | - Abigail Thomas
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Trinidad Caldes
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Ava Kwong
- Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong; Department of Surgery, LKS Faculty of Medicine,University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Inge Søkilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Charlotte K Lautrup
- Clinical Cancer Research Center and Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, The Faculty of Medicine, Aalborg University of Aalborg, Aalborg, Denmark
| | - Esther M John
- Department of Epidemiology & Population Health and Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ramunas Janavicius
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lone Kroeldrup
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Liliana Varesco
- Unit of Hereditary Cancer, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; National Cancer Institute, Rio de Janeiro, Brazil
| | - Judy Garber
- Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, IOV - Istituto Oncologico Veneto - IRCCS, Padova, Italy
| | - Christi J Van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tina Selkirk
- NorthShore University HealthSystem, University of Chicago, Evanston, IL
| | - Pal Moller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Center for Hereditary Tumors, HELIOS-Klinikum Wuppertal, University of Witten-Herdecke, Wuppertal, Germany
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Thorne
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sarah M Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Barbara Pasini
- Medical Genetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Conxi Lazaro
- ONCOBELL-IDIBELL-IDIBGI-IGTP, CIBERONC, Hereditary Cancer Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney Medical School, University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David E Goldgar
- Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT.
| |
Collapse
|
5
|
Kalfakakou D, Fostira F, Papathanasiou A, Apostolou P, Dellatola V, Gavra IE, Vlachos IS, Scouras ZG, Drosopoulou E, Yannoukakos D, Konstantopoulou I. CanVaS: Documenting the genetic variation spectrum of Greek cancer patients. Hum Mutat 2021; 42:1081-1093. [PMID: 34174131 DOI: 10.1002/humu.24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
National genetic variation registries vastly increase the level of detail for the relevant population, while directly affecting patient management. Herein, we report CanVaS, a Cancer Variation reSource aiming to document the genetic variation of cancer patients in Greece. CanVaS comprises germline genetic data from 7,363 Greek individuals with a personal and/or family history of malignancy. The data set incorporates approximately 24,000 functionally annotated rare variants in 97 established or suspected cancer susceptibility genes. For each variant, allele frequency for the Greek population, interpretation for clinical significance, anonymized family and segregation information, as well as phenotypic traits of the carriers, are included. Moreover, information on the geographic distribution of the variants across the country is provided, enabling the study of Greek population isolates. Direct comparisons between Greek (sub)populations with relevant genetic resources are supported, allowing fine-grain localized adjustment of guidelines and clinical decision-making. Most importantly, anonymized data are available for download, while the Leiden Open Variation Database schema is adopted, enabling integration/interconnection with central resources. CanVaS could become a stepping-stone for a countrywide effort to characterize the cancer genetic variation landscape, concurrently supporting national and international cancer research. The database can be accessed at: http://ithaka.rrp.demokritos.gr/CanVaS.
Collapse
Affiliation(s)
- Despoina Kalfakakou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Athanasios Papathanasiou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki Dellatola
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioanna E Gavra
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis S Vlachos
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
6
|
Apostolou P, Fostira F, Kouroussis C, Kalfakakou D, Delimitsou A, Agelaki S, Androulakis N, Christodoulou C, Kalbakis K, Kalykaki A, Sanidas E, Papadimitriou C, Vamvakas L, Georgoulias V, Mavroudis D, Yannoukakos D, Konstantopoulou I, Saloustros E. BRCA1 and BRCA2 germline testing in Cretan isolates reveals novel and strong founder effects. Int J Cancer 2020; 147:1334-1342. [PMID: 32022259 DOI: 10.1002/ijc.32903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Germline BRCA1 and BRCA2 loss-of-function variants have been linked to increased breast and ovarian cancer risk, with more than 5,000 distinct pathogenic variants being reported worldwide. Among individuals of Greek descent, the BRCA1/2 variant spectrum is heterogeneous, but characterized by strong founder effects. As patients from certain geographical regions of Greece (like Crete) were underrepresented in previous studies, we hypothesized that isolated Cretans, a southern Greece islanders' population with distinct demographic, cultural and genetic features, could harbor founder BRCA1/2 mutations. A total of 304 breast or/and ovarian cancer patients of Cretan descent, fulfilling NCCN criteria for genetic testing, were tested by NGS or Sanger sequencing, followed by MLPA. Haplotype analysis was subsequently performed to investigate potential founder effects of recurrent alleles. Overall, 16.5% (50/304) of the tested patients carried 22 different pathogenic variants; 48% in BRCA1, 52% in BRCA2. Three variants, namely two in BRCA2 (Δexons 12 and 13 and c.7806-2A>T) and one in BRCA1 (c.5492del), constituting approximately half (48%) of all detected pathogenic variants, were shown to have a founder effect, with all carriers sharing common haplotypes. Remarkably, these variants were confined to Cretans and have not been identified in other regions of Greece. The high prevalence of specific BRCA1/2 pathogenic variants among Cretans, provides the possibility of cost- and time-efficient screening of the Cretan population. Integrating this knowledge in local public health services may have a significant impact on cancer prevention, and may serve as a starting point for the implementation of testing on a population level.
Collapse
Affiliation(s)
- Paraskevi Apostolou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Despoina Kalfakakou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Angeliki Delimitsou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Medical Oncology, School of Medicine, University Hospital of Heraklion, Crete, Greece
| | | | | | - Konstantinos Kalbakis
- Department of Medical Oncology, School of Medicine, University Hospital of Heraklion, Crete, Greece
| | - Antonia Kalykaki
- Department of Medical Oncology, School of Medicine, University Hospital of Heraklion, Crete, Greece
| | - Elias Sanidas
- Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Christos Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lambros Vamvakas
- Department of Medical Oncology, School of Medicine, University Hospital of Heraklion, Crete, Greece
| | | | - Dimitris Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Medical Oncology, School of Medicine, University Hospital of Heraklion, Crete, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Emmanouil Saloustros
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
7
|
Laitman Y, Friebel TM, Yannoukakos D, Fostira F, Konstantopoulou I, Figlioli G, Bonanni B, Manoukian S, Zuradelli M, Tondini C, Pasini B, Peterlongo P, Plaseska-Karanfilska D, Jakimovska M, Majidzadeh K, Zarinfam S, Loizidou MA, Hadjisavvas A, Michailidou K, Kyriacou K, Behar DM, Molho RB, Ganz P, James P, Parsons MT, Sallam A, Olopade OI, Seth A, Chenevix-Trench G, Leslie G, McGuffog L, Marafie MJ, Megarbane A, Al-Mulla F, Rebbeck TR, Friedman E. The spectrum of BRCA1 and BRCA2 pathogenic sequence variants in Middle Eastern, North African, and South European countries. Hum Mutat 2019; 40:e1-e23. [PMID: 31209999 DOI: 10.1002/humu.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/25/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.
Collapse
Affiliation(s)
- Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Gisella Figlioli
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Monica Zuradelli
- Medical Oncology and Hematology Department, Humanitas Cancer Center, Milan, Italy
| | - Carlo Tondini
- Department of Medical Oncology, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Milena Jakimovska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Keivan Majidzadeh
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | | | - Rinat Bernstein Molho
- The Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Patricia Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA
| | - Paul James
- Parkville Familial Cancer Peter MacCallum Cancer Center, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Aminah Sallam
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | | | - Arun Seth
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Papamentzelopoulou M, Apostolou P, Fostira F, Dimitrakakis C, Loutradis D, Fountzilas G, Yannoukakos D, Konstantopoulou I. Prevalence and founder effect of the BRCA1 p.(Val1833Met) variant in the Greek population, with further evidence for pathogenicity and risk modification. Cancer Genet 2019; 237:90-96. [PMID: 31447071 DOI: 10.1016/j.cancergen.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Multiple lines of evidence have suggested a likely causative role in breast/ovarian cancer (BrCa/OvCa) predisposition for the BRCA1 p.(Val1833Met) variant, predominantly found among Greek patients. Our aim was to study the variant's prevalence and founder effect on the Greek population, while providing additional data for its pathogenicity. METHODS We genotyped 3531 BrCa/OvCa patients using Sanger and next generation sequencing, as well as 1558 healthy, age-matched females with real-time PCR. Carriers underwent haplotype analysis to determine a founder effect. A co-segregation analysis was applied to estimate the likelihood ratio for pathogenicity. RESULTS In total, 27 BrCa/OvCa patients (0.77%; 27/3531) were found to carry the p.(Val1833Met) variant. No carriers were identified in the control group diagnosis. A common shared haplotype, spanning 2.76 Mb on chromosome 17 was demonstrated among carriers, establishing the founder effect. BRCA1, p.(Val1833Met) is possibly a disease-associated variant, supported by a likelihood ratio of 1.88, while a correlation to ovarian cancer is suspected. CONCLUSIONS Altogether, BRCA1, p.(Val1833Met) variant is a Greek founder and is very likely to predispose for BrCa/OvCa. Therefore, such carriers should be counselled accordingly, with clinical recommendations supporting surveillance and risk-reduction strategies, while providing the option for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Myrto Papamentzelopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynecology, Athens University Medical School, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
9
|
Sharma B, Preet Kaur R, Raut S, Munshi A. BRCA1 mutation spectrum, functions, and therapeutic strategies: The story so far. Curr Probl Cancer 2018; 42:189-207. [PMID: 29452958 DOI: 10.1016/j.currproblcancer.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
BRCA1 gene mutations account for about 25-28% of hereditary Breast Cancer as BRCA1 is included in the category of high penetrance genes. Except for few commonmutations, there is a heterogenous spectrum of BRCA1 mutations in various ethnic groups. 185AGdel and 5382ins Care the most common BRCA1 alterations (founder mutations) which have been identified in most of the population. This review has been compiled with an aim to consolidate the information on genetic variants reported in BRCA1 found in various ethnic groups, their functional implications if known; involvement of BRCA1 in various cellular pathways/processes and potential BRCA1 targeted therapies. The pathological variations of BRCA1 vary among different ethical groups. A systematic search in PubMed and Google scholar for the literature on BRCA1 gene was carried out to figure out structure and function of BRCA1 gene. BRCA1 is a large protein having 1863 amino acids with multiple functional domains and interacts with multiple proteins to carry out various crucial cellular processes. BRCA1 plays a major role in maintaining genome integrity, transcription regulation, chromatin remodeling, cell cycle checkpoint control, DNA damage repair, chromosomal segregation, and apoptosis. Studies investigating the phenotypic response of mutant BRCA1 protein and comparing it to wildtype BRCA1 protein are clinically important as they are involved in homologous recombination and other repair mechanisms. These studies may help in developing more targetted therapies, detecting novel interacting partners, identification of new signaling pathways that BRCA1 is a part of or downstream target genes that BRCA1 affects.
Collapse
Affiliation(s)
- Babita Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Raman Preet Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Sonali Raut
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
10
|
Miresmaeili SM, Kordi Tamandani DM, Kalantar SM, Moshtaghioun SM. Haplotype analysis of BRCA1 intragenic markers in Iranian patients with familial breast and ovarian cancer. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.4.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Tsigginou A, Vlachopoulos F, Arzimanoglou I, Zagouri F, Dimitrakakis C. Cumulative BRCA mutation analysis in the Greek population confirms that homogenous ethnic background facilitates genetic testing. Hered Cancer Clin Pract 2015; 13:17. [PMID: 26300996 PMCID: PMC4545329 DOI: 10.1186/s13053-015-0037-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
Screening for BRCA 1 and BRCA 2 mutations has long moved from the research lab to the clinic as a routine clinical genetic testing. BRCA molecular alteration pattern varies among ethnic groups which makes it already a less straightforward process to select the appropriate mutations for routine genetic testing on the basis of known clinical significance. The present report comprises an in depth literature review of the so far reported BRCA 1 and BRCA 2 molecular alterations in Greek families. Our analysis of Greek cumulative BRCA 1 and 2 molecular data, produced by several independent groups, confirmed that six recurrent deleterious mutations account for almost 60 % and 70 % of all BRCA 1 and 2 and BRCA 1 mutations, respectively. As a result, it makes more sense to perform BRCA mutation analysis in the clinic in two sequential steps, first conventional analysis for the six most prevalent pathogenic mutations and if none identified, a second step of New Generation Sequencing-based whole genome or whole exome sequencing would follow. Our suggested approach would enable more clinically meaningful, considerably easier and less expensive BRCA analysis in the Greek population which is considered homogenous.
Collapse
Affiliation(s)
- Alexandra Tsigginou
- Breast Unit of the 1st Department of Obstetrics and Gynecology, Athens University Medical School, Athens, Greece
| | - Fotios Vlachopoulos
- Breast Unit of the 1st Department of Obstetrics and Gynecology, Athens University Medical School, Athens, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Constantine Dimitrakakis
- Breast Unit of the 1st Department of Obstetrics and Gynecology, Athens University Medical School, Athens, Greece
| |
Collapse
|
12
|
Eccles DM, Mitchell G, Monteiro ANA, Schmutzler R, Couch FJ, Spurdle AB, Gómez-García EB. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol 2015; 26:2057-65. [PMID: 26153499 DOI: 10.1093/annonc/mdv278] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increasing use of BRCA1/2 testing for tailoring cancer treatment and extension of testing to tumour tissue for somatic mutation is moving BRCA1/2 mutation screening from a primarily prevention arena delivered by specialist genetic services into mainstream oncology practice. A considerable number of gene tests will identify rare variants where clinical significance cannot be inferred from sequence information alone. The proportion of variants of uncertain clinical significance (VUS) is likely to grow with lower thresholds for testing and laboratory providers with less experience of BRCA. Most VUS will not be associated with a high risk of cancer but a misinterpreted VUS has the potential to lead to mismanagement of both the patient and their relatives. DESIGN Members of the Clinical Working Group of ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) global consortium (www.enigmaconsortium.org) observed wide variation in practices in reporting, disclosure and clinical management of patients with a VUS. Examples from current clinical practice are presented and discussed to illustrate potential pitfalls, explore factors contributing to misinterpretation, and propose approaches to improving clarity. RESULTS AND CONCLUSION Clinicians, patients and their relatives would all benefit from an improved level of genetic literacy. Genetic laboratories working with clinical geneticists need to agree on a clinically clear and uniform format for reporting BRCA test results to non-geneticists. An international consortium of experts, collecting and integrating all available lines of evidence and classifying variants according to an internationally recognized system, will facilitate reclassification of variants for clinical use.
Collapse
Affiliation(s)
- D M Eccles
- Faculty of Medicine Academic Unit of Cancer Sciences, Southampton General Hospital, Southampton, UK
| | - G Mitchell
- Familial Cancer Centre, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia Hereditary Cancer Program, Department of Medical Oncology, University of British Columbia, Vancouver, Canada
| | - A N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center, Tampa, USA
| | - R Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - F J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | - A B Spurdle
- Molecular Cancer Epidemiology Laboratory, Division of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, BNE, Herston, Australia
| | - E B Gómez-García
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|
13
|
Konstantopoulou I, Tsitlaidou M, Fostira F, Pertesi M, Stavropoulou AV, Triantafyllidou O, Tsotra E, Tsiftsoglou AP, Tsionou C, Droufakou S, Dimitrakakis C, Fountzilas G, Yannoukakos D. High prevalence ofBRCA1founder mutations in Greek breast/ovarian families. Clin Genet 2013; 85:36-42. [DOI: 10.1111/cge.12274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- I Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - M Tsitlaidou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - F Fostira
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - M Pertesi
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - A-V Stavropoulou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| | - O Triantafyllidou
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
- 1st Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - E Tsotra
- Department of Medical Oncology, Papageorgiou Hospital; Aristotle University of Thessaloniki School of Medicine; Thessaloniki Greece
| | - AP Tsiftsoglou
- Department of General Surgery, Breast Division; St Luke's Hospital; Thessaloniki Greece
| | - C Tsionou
- 2nd Breast Clinic; ‘Mitera’ Maternity Hospital; Athens Greece
| | - S Droufakou
- Department of Medical Oncology; Hippokration Hospital; Athens Greece
| | - C Dimitrakakis
- 1st Department of Obstetrics and Gynecology; Athens University Medical School; Athens Greece
| | - G Fountzilas
- Department of Medical Oncology, Papageorgiou Hospital; Aristotle University of Thessaloniki School of Medicine; Thessaloniki Greece
| | - D Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES; National Center for Scientific Research “Demokritos”; Athens Greece
| |
Collapse
|
14
|
Stavropoulou AV, Fostira F, Pertesi M, Tsitlaidou M, Voutsinas GE, Triantafyllidou O, Bamias A, Dimopoulos MA, Timotheadou E, Pectasides D, Christodoulou C, Klouvas G, Papadimitriou C, Makatsoris T, Pentheroudakis G, Aravantinos G, Karydakis V, Yannoukakos D, Fountzilas G, Konstantopoulou I. Prevalence of BRCA1 mutations in familial and sporadic greek ovarian cancer cases. PLoS One 2013; 8:e58182. [PMID: 23536787 PMCID: PMC3594241 DOI: 10.1371/journal.pone.0058182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 12/20/2022] Open
Abstract
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23-24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.
Collapse
Affiliation(s)
- Alexandra V. Stavropoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Maroulio Pertesi
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Marianthi Tsitlaidou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Gerassimos E. Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Olga Triantafyllidou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Eleni Timotheadou
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, “Hippokration” Hospital, Athens, Greece
| | | | - George Klouvas
- Second Department of Medical Oncology, “Metropolitan” Hospital, Piraeus, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens School of Medicine, Athens, Greece
| | - Thomas Makatsoris
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
15
|
Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:928562. [PMID: 24312913 PMCID: PMC3838820 DOI: 10.1155/2013/928562] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
Breast cancer (BC) is the most common cancer of women all over the world. BRCA1 and BRCA2 gene mutations comprise the most important genetic susceptibility of BC. Except for few common mutations, the spectrum of BRCA1 and BRCA2 mutations is heterogeneous in diverse populations. 185AGdel and 5382insC are the most important BRCA1 and BRCA2 alterations which have been encountered in most of the populations. After those Ashkenazi founder mutations, 300T>G also demonstrated sparse frequency in African American and European populations. This review affords quick access to the most frequent alterations among various populations which could be helpful in BRCA screening programs.
Collapse
Affiliation(s)
- Fatemeh Karami
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
- *Parvin Mehdipour:
| |
Collapse
|
16
|
Creating highly dense and uniform protein and DNA microarrays through photolithography and plasma modification of glass substrates. Biosens Bioelectron 2012; 34:273-81. [DOI: 10.1016/j.bios.2012.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/20/2022]
|
17
|
Prevalence of BRCA1 mutations among 403 women with triple-negative breast cancer: implications for genetic screening selection criteria: a Hellenic Cooperative Oncology Group Study. Breast Cancer Res Treat 2012; 134:353-62. [PMID: 22434525 DOI: 10.1007/s10549-012-2021-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
In spite the close association of the triple-negative breast cancer immunophenotype with hereditary breast cancers and the BRCA1 pathway, there is a lack of population studies that determine the frequency of BRCA1 mutations among triple-negative breast cancer patients. To address this, we have screened a large sample of 403 women diagnosed with triple-negative invasive breast cancer, independently of their age or family history, for germline BRCA1 mutations. Median age at diagnosis was 50 years (range 20-83). The overall prevalence of triple-negative cases among the initial patient group with invasive breast cancer was 8%. BRCA1 was screened by direct DNA sequencing in all patients, including all exons where a mutation was previously found in the Greek population (exons 5, 11, 12, 16, 20, 21, 22, 23, 24-77% of the BRCA1 coding region), including diagnostic PCRs to detect the three Greek founder large genomic rearrangements. Sixty-five deleterious BRCA1 mutations were identified among the 403 triple-negative breast cancer patients (16%). Median age of onset for mutation carriers was 39 years. Among a total of 106 women with early-onset triple-negative breast cancer (<40 years), 38 (36%) had a BRCA1 mutation, while 27% of women with triple-negative breast cancer diagnosed before 50 years (56/208) had a BRCA1 mutation. A mutation was found in 48% (50/105) of the triple-negative breast cancer patients with family history of breast or ovarian cancer. It is noteworthy, however, that of the 65 carriers, 15 (23%) had no reported family history of related cancers. All but one of the carriers had grade III tumors (98%). These results indicate that women with early-onset triple-negative breast cancer, and ideally all triple-negative breast cancer patients, are candidates for BRCA1 genetic testing even in the absence of a family history of breast or ovarian cancer.
Collapse
|
18
|
Koumpis C, Dimitrakakis C, Antsaklis A, Royer R, Zhang S, Narod SA, Kotsopoulos J. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Greece. Hered Cancer Clin Pract 2011; 9:10. [PMID: 22085629 PMCID: PMC3240809 DOI: 10.1186/1897-4287-9-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/15/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inheritance of a mutation in either BRCA1 or BRCA2 accounts for approximately 5% of all breast cancer cases, but varies by country. Investigations into the contribution of BRCA mutations to breast cancer incidence in Greece have been, for the most part, limited by small sample sizes and by the use of cases selected for their family history of cancer. The aim of the current study was to estimate BRCA mutation frequencies in breast cancer patients unselected for family history. METHODS To do so, we enrolled 127 unselected women with breast cancer from the Alexandra Hospital in Athens, Greece, a large public hospital in the city. Mutations in BRCA1 and BRCA2 were detected using a combination of techniques and were confirmed by direct sequencing. Two large genomic deletions were sought using mutation-specific assays. A detailed family history of cancer was obtained from each patient. RESULTS We were able to successfully complete testing on samples from 127 women. Among these, six mutations were identified (four in BRCA1 and two in BRCA2) representing 4.7% of the total or 9.5% of cases diagnosed before age forty. None of the mutation carriers had a family history of breast or ovarian cancer. Three of the four BRCA1 mutations were in exon 20: two were a G5331A mutation and the third was a 3.2 kb deletion. The fourth BRCA1 mutation was the 3819delGTAAA in exon 11. The two BRCA2 mutations were in exon 11 (3782del10 and 4512insT). CONCLUSIONS The G5331A mutation in BRCA1 appears to be a founder mutation in the Greek population.
Collapse
|
19
|
Thanassoulas A, Nomikos M, Theodoridou M, Stavros P, Mastellos D, Nounesis G. Thermal and chemical denaturation of the BRCT functional module of human 53BP1. Int J Biol Macromol 2011; 49:297-304. [DOI: 10.1016/j.ijbiomac.2011.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
|
20
|
Pertesi M, Konstantopoulou I, Yannoukakos D. Haplotype analysis of two recurrent genomic rearrangements in the BRCA1 gene suggests they are founder mutations for the Greek population. Clin Genet 2010; 80:375-82. [DOI: 10.1111/j.1399-0004.2010.01532.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Misiakos K, Petrou PS, Kakabakos SE, Yannoukakos D, Contopanagos H, Knoll T, Velten T, DeFazio M, Schiavo L, Passamano M, Stamou D, Nounesis G. Fully integrated monolithic optoelectronic transducer for real-time protein and DNA detection: the NEMOSLAB approach. Biosens Bioelectron 2010; 26:1528-35. [PMID: 20729053 DOI: 10.1016/j.bios.2010.07.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/14/2010] [Accepted: 07/26/2010] [Indexed: 02/06/2023]
Abstract
The development and testing of a portable bioanalytical device which was capable for real-time monitoring of binding assays was demonstrated. The device was based on arrays of nine optoelectronic transducers monolithically integrated on silicon chips. The optocouplers consisted of nine silicon avalanche diodes self-aligned to nine silicon nitride waveguides all converging to a single silicon detector. The waveguides were biofunctionalized by appropriate recognition molecules. Integrated thick polymer microchannels provided the necessary fluidic functions to the chip. A single sided direct contact scheme through a board-to-board receptacle was developed and combined with a portable customized readout and control instrument. Real-time detection of deleterious mutations in BRCA1 gene related to predisposition to hereditary breast/ovarian cancer was performed with the instrument developed using PCR products. Detection was based on waveguided photons elimination through interaction with fluorescently labeled PCR products. Detection of single biomolecular binding events was also demonstrated using nanoparticles as labels. In addition, label-free monitoring of bioreactions in real time was achieved by exploiting wavelength filtering on photonic crystal engineered waveguides. The proposed miniaturized sensing device with proper packaging and accompanied by a portable instrument can find wide application as a platform for reliable and cost effective point-of-care diagnosis.
Collapse
Affiliation(s)
- Konstantinos Misiakos
- Institute of Microelectronics, N.C.S.R. Demokritos, GR-15310 Aghia Paraskevi, Athens, Attiki, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Detection of mutations in hereditary breast and ovarian cancer-related BRCA1 and BRCA2 genes is an effective method of cancer prevention and early detection. Different ethnic and geographical regions have different BRCA1 and BRCA2 mutation spectrum and prevalence. Along with the emerging targeted therapy, demand and uptake for rapid BRCA1/2 mutations testing will increase in a near future. However, current patients selection and genetic testing strategies in most countries impose significant lag in this practice. The knowledge of the genetic structure of particular populations is important for the developing of effective screening protocol and may provide more efficient approach for the individualization of genetic testing. Elucidating of founder effect in BRCA1/2 genes can have an impact on the management of hereditary cancer families on a national and international healthcare system level, making genetic testing more affordable and cost-effective. The purpose of this review is to summarize current evidence about the BRCA1/2 founder mutations diversity in European populations.
Collapse
|
23
|
Clinical relevance of rare germline sequence variants in cancer genes: evolution and application of classification models. Curr Opin Genet Dev 2010; 20:315-23. [PMID: 20456937 DOI: 10.1016/j.gde.2010.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 12/11/2022]
Abstract
Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.
Collapse
|
24
|
Mutation scanning of exon 20 of the BRCA1 gene by high-resolution melting curve analysis. Clin Biochem 2010; 43:178-85. [DOI: 10.1016/j.clinbiochem.2009.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/19/2022]
|
25
|
Two founder BRCA2 mutations predispose to breast cancer in young women. Breast Cancer Res Treat 2009; 122:567-71. [PMID: 19949853 DOI: 10.1007/s10549-009-0661-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
The mutation spectrum of BRCA1 and BRCA2 presents a wide range of unique mutations in breast/ovarian cancer patients but recurrent mutations with founder effects have also been described. BRCA2 5344delAATA and 9538delAA are recurrent mutations in Castilla-León (Spain) representing 10.6% of BRCA2 positive families. By genotyping eleven chromosome 13 markers (4.3 Mb) we demonstrate that each mutation shows core haplotypes of 1.66 and 0.87 Mb, respectively, supporting a common ancestor in Castilla-León. Furthermore, both mutations are associated with earlier onset of breast cancer (5344delAATA: 37.4 years, P = 0.033; 9538delAA: 39.4 years, P = 0.008). The identification of founder effects improves the genetic screening strategy to be followed and facilitates the clinical management of asymptomatic carriers.
Collapse
|
26
|
Infante M, Durán M, Acedo A, Pérez-Cabornero L, Sanz DJ, García-González M, Beristain E, Esteban-Cardeñosa E, de la Hoya M, Teulé A, Vega A, Tejada MI, Lastra E, Miner C, Velasco EA. BRCA1 5272-1G>A and BRCA2 5374delTATG are founder mutations of high relevance for genetic counselling in breast/ovarian cancer families of Spanish origin. Clin Genet 2009; 77:60-9. [PMID: 19912264 DOI: 10.1111/j.1399-0004.2009.01272.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of BRCA1 and BRCA2 germ line mutations in breast/ovarian cancer families varies among different populations, which typically present a wide spectrum of unique mutations. Splicing mutation 5272-1G>A of BRCA1 and frameshift mutation 5374delTATG of BRCA2 are highly prevalent mutations in Castilla-León (Spain), accounting for 18.4% and 13.6% of BRCA1 and BRCA2 positive families, respectively. To test the presence of founder effects, 9 Spanish 5272-1G>A and 13 5374delTATG families were genotyped with polymorphic markers linked to BRCA1 or BRCA2. All the 5272-1G>A families shared a common haplotype in eight markers (1.1 Mb region) and the mutation age was estimated in 15 generations (approximately 380 years). A conserved haplotype associated to 5374delTATG was observed in four markers (0.82 Mb). The mutation occurred approximately 48 generations ago (approximately 1200 years). Each mutation likely arose from a common ancestor that could be traced to a small area of Castilla-León and expanded to other Spanish regions. They can have a significant impact on the clinical management of asymptomatic carriers as well as on the genetic screening strategy to be followed in populations with Spanish ancestries.
Collapse
Affiliation(s)
- M Infante
- Grupo de Genética del Cáncer, Instituto de Biología y Genética Molecular (UVa-CSIC), Valladolid
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Armaou S, Pertesi M, Fostira F, Thodi G, Athanasopoulos PS, Kamakari S, Athanasiou A, Gogas H, Yannoukakos D, Fountzilas G, Konstantopoulou I. Contribution of BRCA1 germ-line mutations to breast cancer in Greece: a hospital-based study of 987 unselected breast cancer cases. Br J Cancer 2009; 101:32-7. [PMID: 19491894 PMCID: PMC2713692 DOI: 10.1038/sj.bjc.6605115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: In most Western populations, 5–10% of all breast cancer cases can be attributed to major genetic factors such as predisposing mutations in BRCA1 and BRCA2, with early-onset cases generally considered as an indicator of genetic susceptibility. Specific BRCA1 and BRCA2 mutations or different mutation frequencies have been identified in specific populations and ethnic groups. Previous studies in Greek breast and/or ovarian cancer patients with family history have shown that four specific BRCA1 mutations, c.5266dupC, G1738R, and two large genomic rearrangements involving deletions of exons 20 and 24, have a prominent function in the population's BRCA1 and BRCA2 mutation spectrum. Methods: To estimate the frequency of the above mutations in unselected Greek breast cancer women, we screened 987 unselected cases independently of their family history, collected from major Greek hospitals. RESULTS: Of the 987 patients, 26 (2.6%) were found to carry one of the above mutations in the BRCA1 gene: 13 carried the c.5266dupC mutation (1.3%), 6 carried the exon 24 deletion (0.6%), 3 carried the exon 20 deletion (0.3%), and 4 carried the G1738R mutation (0.4%). Among 140 patients with early-onset breast cancer (<40 years), 14 carried one of the four mutations (10.0%). Conclusion: These results suggest that a low-cost genetic screening for only the four prominent BRCA1 mutations may be advisable to all early-onset breast cancer patients of Greek origin.
Collapse
Affiliation(s)
- S Armaou
- Molecular Diagnostics Laboratory, I/R-RP, National Center for Scientific Research Demokritos, Aghia Paraskevi, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Papi L, Putignano AL, Congregati C, Zanna I, Sera F, Morrone D, Falchetti M, Turco MRD, Ottini L, Palli D, Genuardi M. Founder mutations account for the majority of BRCA1-attributable hereditary breast/ovarian cancer cases in a population from Tuscany, Central Italy. Breast Cancer Res Treat 2008; 117:497-504. [PMID: 18821011 DOI: 10.1007/s10549-008-0190-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/05/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND Germline mutations in the BRCA1 and BRCA2 tumour-suppressor genes predispose to early-onset breast and ovarian cancer. Although both genes display a highly heterogeneous mutation spectrum, a number of alterations recur in some populations. Only a limited number of founder mutations have been identified in the Italian population so far. OBJECTIVE To investigate the spectrum of BRCA1/BRCA2 mutations in a set of families originary from the Central-Eastern part of Tuscany and to ascertain the presence of founder effects. We also wanted to approximate the age of the most frequent BRCA1 founder mutation. RESULTS Overall, four distinct BRCA1 mutations accounted for a large fraction (72.7%) of BRCA1-attributable hereditary breast/ovarian cancer in families originary from this area. We identified common haplotypes for two newly recognised recurrent BRCA1 mutations, c.3228_3229delAG and c.3285delA. The c.3228_3229delAG mutation was estimated to have originated about 129 generations ago. Interestingly, male breast cancer cases were present in 3 out of 11 families with the c.3228_3229delAG mutation. CONCLUSIONS The observation that a high proportion of families with BRCA1 alterations from Central-Eastern Tuscany harbours a limited number of founder mutations can have significant impact on clinical management of at risk subjects from this area. In addition, the identification of a large set of families carrying an identical mutation that predisposes to breast and ovarian cancer provides unique opportunities to study the effect of other genetic and environmental factors on penetrance and disease phenotype.
Collapse
Affiliation(s)
- Laura Papi
- Medical Genetics Unit, Department of Clinical Physiopathology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peixoto A, Santos C, Rocha P, Pinheiro M, Príncipe S, Pereira D, Rodrigues H, Castro F, Abreu J, Gusmão L, Amorim A, Teixeira MR. The c.156_157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Res Treat 2008; 114:31-8. [PMID: 18363094 DOI: 10.1007/s10549-008-9978-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
We evaluated the contribution of an Alu insertion in BRCA2 exon 3 (c.156_157insAlu) to inherited predisposition to breast/ovarian cancer in 208 families originated mostly from northern/central Portugal. We identified the c.156_157insAlu BRCA2 mutation in 14 families and showed that it accounts for more that one-fourth of deleterious BRCA1/BRCA2 mutations in breast/ovarian cancer families originated from this part of the country. This mutation originates BRCA2 exon 3 skipping and we demonstrated its pathogenic effect by showing that the BRCA2 full length transcript is derived only from the wild type allele in carriers, that it is absent in 262 chromosomes from healthy blood donors, and that it co-segregates with the disease. Polymorphic microsatellite markers were used for haplotype analysis in three informative families. In two of the three families one haplotype was shared for all but two markers, whereas in the third family all markers telomeric to BRCA2 differed from that observed in the other two. Although the c.156_157insAlu BRCA2 mutation has so far only been identified in Portuguese breast/ovarian cancer families, screening of this rearrangement in other populations will allow evaluation of whether or not it is a population-specific founder mutation and a more accurate estimation of its distribution and age.
Collapse
Affiliation(s)
- Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lovelock PK, Spurdle AB, Mok MTS, Farrugia DJ, Lakhani SR, Healey S, Arnold S, Buchanan D, Couch FJ, Henderson BR, Goldgar DE, Tavtigian SV, Chenevix-Trench G, Brown MA. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants? Breast Cancer Res 2008; 9:R82. [PMID: 18036263 PMCID: PMC2246181 DOI: 10.1186/bcr1826] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/16/2007] [Accepted: 11/26/2007] [Indexed: 12/03/2022] Open
Abstract
Introduction Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer.
Collapse
Affiliation(s)
- Paul K Lovelock
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston Road, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Takano EA, Mitchell G, Fox SB, Dobrovic A. Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer 2008; 8:59. [PMID: 18298804 PMCID: PMC2266761 DOI: 10.1186/1471-2407-8-59] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/25/2008] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Germline inactivating mutations in BRCA1 and BRCA2 underlie a major proportion of the inherited predisposition to breast and ovarian cancer. These mutations are usually detected by DNA sequencing. Cost-effective and rapid methods to screen for these mutations would enable the extension of mutation testing to a broader population. High resolution melting (HRM) analysis is a rapid screening methodology with very low false negative rates. We therefore evaluated the use of HRM as a mutation scanning tool using, as a proof of principle, the three recurrent BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population in addition to other mutations that occur in the same regions. METHODS We designed PCR amplicons for HRM scanning of BRCA1 exons 2 and 20 (carrying the founder mutations185delAG and 5382insC respectively) and the part of the BRCA2 exon 11 carrying the 6174delT founder mutation. The analysis was performed on an HRM-enabled real time PCR machine. RESULTS We tested DNA from the peripheral blood of 29 individuals heterozygous for known mutations. All the Ashkenazi founder mutations were readily identified. Other mutations in each region that were also readily detected included the recently identified Greek founder mutation 5331G>A in exon 20 of BRCA1. Each mutation had a reproducible melting profile. CONCLUSION HRM is a simple and rapid scanning method for known and unknown BRCA1 and BRCA2 germline mutations that can dramatically reduce the amount of sequencing required and reduce the turnaround time for mutation screening and testing. In some cases, such as tracking mutations through pedigrees, sequencing may only be necessary to confirm positive results. This methodology will allow for the economical screening of founder mutations not only in people of Ashkenazi Jewish ancestry but also in other populations with founder mutations such as Central and Eastern Europeans (BRCA1 5382insC) and Greek Europeans (BRCA1 5331G>A).
Collapse
Affiliation(s)
- Elena A Takano
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia.
| | | | | | | |
Collapse
|