1
|
Yayli G, Tokofsky A, Nayar U. The intersection of the HER2-low subtype with endocrine resistance: the role of interconnected signaling pathways. Front Oncol 2024; 14:1461190. [PMID: 39650068 PMCID: PMC11621065 DOI: 10.3389/fonc.2024.1461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Since its introduction in the 1970s, endocrine therapy that targets the estrogen receptor alpha (ERα) signaling pathway has had tremendous success in the clinic in estrogen receptor positive (ER+) breast cancer. However, resistance to endocrine therapy eventually develops in virtually all patients with metastatic disease. Endocrine resistance is a primary unaddressed medical need for ER+ metastatic breast cancer patients. It has been shown that tumors become resistant through various mechanisms, converging on the acquisition of genetic alterations of ER, components of the MAP kinase pathway, or transcription factors (TFs). For instance, mutations in the human epidermal growth factor receptor-2 (HER2) lead to complete resistance to all current endocrine therapies including aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor degraders, as well as cross-resistance to CDK4/6 inhibitors (CDK4/6is). Emerging evidence points to an intriguing connection between endocrine-resistant tumors and the HER2-low subtype. Specifically, recent studies and our analysis of a publicly available breast cancer dataset both indicate that metastatic ER+ breast cancer with endocrine resistance conferred through acquired genetic alterations can often be classified as HER2-low rather than HER2-0/HER2-negative. Limited data suggest that acquired endocrine resistance can also be accompanied by a subtype switch. Therefore, we suggest that there is an underappreciated association between the HER2-low subtype and endocrine resistance. In this perspective piece, we explore the evidence linking the HER2-low subtype with the various pathways to endocrine resistance and suggest that there are signaling networks in HER2-low tumors that intersect endocrine resistance and can be effectively targeted.
Collapse
Affiliation(s)
- Gizem Yayli
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alexa Tokofsky
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Utthara Nayar
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Gelsomino L, Caruso A, Tasan E, Leonetti AE, Malivindi R, Naimo GD, Giordano F, Panza S, Gu G, Perrone B, Giordano C, Mauro L, Nardo B, Filippelli G, Bonofiglio D, Barone I, Fuqua SAW, Catalano S, Andò S. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal 2024; 22:545. [PMID: 39543704 PMCID: PMC11566413 DOI: 10.1186/s12964-024-01918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Endocrine therapy (ET) has improved the clinical outcomes of Estrogen receptor alpha-positive (ERɑ +) breast cancer (BC) patients, even though resistance to ET remains a clinical issue. Mutations in the hormone-binding domain of ERɑ represent an acquired intrinsic mechanism of ET resistance. However, the latter also depends on the multiple functional interactions between BC cells and the tumor microenvironment (TME). Here, we investigated how the most common Y537S-ERɑ mutation may influence the behavior of fibroblasts, the most prominent component of the TME. METHODS We conducted coculture experiments with normal human foreskin fibroblasts BJ1-hTERT (NFs), cancer-associated fibroblasts (CAFs), isolated from human BC specimens, and Y537S CRISPR-expressing MCF-7 BC cells (MCF-7YS). Mass spectrometry (MS) and Metacore analyses were performed to investigate how the functional interactions between BC cells/fibroblasts may affect their proteomic profile. The impact of fibroblasts on BC tumor growth and metastatic potential was evaluated in nude mice. RESULTS Mutant BC conditioned medium (CM) affected the morphology/proliferation/migration of both NFs and CAFs. 198 deregulated proteins signed the proteomic similarity profile of NFs exposed to the YS-CM and CAFs. Among the upregulated proteins, Yes-associated protein 1 (YAP1) was the main central hub in the direct interaction network. Increased YAP1 protein expression and activity were confirmed in NFs treated with MCF-7YS-CM. However, YAP1 activation appears to crosstalk with the insulin growth factor-1 receptor (IGF-1R). Higher amount of IGF-1 were noticed in the MCF-7YS-CM cells compared to the MCF-7P, and IGF-1 immunodepletion reversed the enhanced YAP1 expression and activity. Mutant cells upon exposure to the NF- and CAF-CM exhibited an enhanced proliferation/growth/migration/invasion compared to the MCF-7P. MCF-7YS cells when implanted with CAFs showed an early relative increased tumor volume compared to YS alone. No changes were observed when MCF-7P cells were co-implanted with CAFs. Compared with that in MCF-7P cells, the metastatic burden of MCF-7YS cells was intrinsically greater, and this effect was augmented upon treatment with NF-CM and further increased with CAF-CM. CONCLUSIONS YS mutant BC cells induced the conversion of fibroblasts into CAFs, via YAP, which represent a potential therapeutic target which interrupt the functional interactions between mutant cells/TME and to be implemented in the novel therapeutic strategy of a subset of metastatic BC patients carrying the frequent Y537S mutations.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Emine Tasan
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Adele Elisabetta Leonetti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Salvatore Panza
- Department of Experimental and Clinical Medicine, "Magna Graecia", University of Catanzaro, Catanzaro, Italy
| | - Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Benedetta Perrone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Loredana Mauro
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Department of Surgery, General Surgery Unit, Annunziata Hospital, Cosenza, Italy
| | | | - Daniela Bonofiglio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy
- Clinical Laboratory Unit, A.O. "Annunziata", Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy.
- Health Center, University of Calabria, Arcavacata Di Rende (CS), Cosenza, Italy.
| |
Collapse
|
3
|
Identification of a human estrogen receptor α tetrapeptidic fragment with dual antiproliferative and anti-nociceptive action. Sci Rep 2023; 13:1326. [PMID: 36693877 PMCID: PMC9873809 DOI: 10.1038/s41598-023-28062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.
Collapse
|
4
|
La Camera G, Gelsomino L, Caruso A, Panza S, Barone I, Bonofiglio D, Andò S, Giordano C, Catalano S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers (Basel) 2021; 13:cancers13051160. [PMID: 33800302 PMCID: PMC7962645 DOI: 10.3390/cancers13051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Two-thirds of breast cancer patients present an estrogen receptor–positive tumor at diagnosis, and the main treatment options for these patients are endocrine therapies such as aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the failure of the therapeutic response to these hormonal treatments remains the major clinical challenge. Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed, EVs isolated from tumor and stromal cells act as key messengers in intercellular communications able to propagate traits of resistance and/or educate the microenvironment to sustain a breast cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in hormonal resistance can provide the rationale for novel and effective treatment modalities and allow for the identification of potential biomarkers to monitor therapy response in ER-positive breast cancer patients. Abstract Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
5
|
Clusan L, Le Goff P, Flouriot G, Pakdel F. A Closer Look at Estrogen Receptor Mutations in Breast Cancer and Their Implications for Estrogen and Antiestrogen Responses. Int J Mol Sci 2021; 22:ijms22020756. [PMID: 33451133 PMCID: PMC7828590 DOI: 10.3390/ijms22020756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. More than 70% of BC cases express estrogen receptor alpha (ERα), a central transcription factor that stimulates the proliferation of breast cancer cells, usually in the presence of estrogen. While most cases of ER-positive BC initially respond to antiestrogen therapies, a high percentage of cases develop resistance to treatment over time. The recent discovery of mutated forms of ERα that result in constitutively active forms of the receptor in the metastatic-resistance stage of BC has provided a strong rationale for the development of new antiestrogens. These molecules targeting clinically relevant ERα mutants and a combination with other pharmacological inhibitors of specific pathways may constitute alternative treatments to improve clinical practice in the fight against metastatic-resistant ER-positive BC. In this review, we summarize the latest advances regarding the particular involvement of point mutations of ERα in endocrine resistance. We also discuss the involvement of synonymous ERα mutations with respect to co-translational folding of the receptor and ribosome biogenesis in breast carcinogenesis.
Collapse
|
6
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
7
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
8
|
Jeffreys SA, Powter B, Balakrishnar B, Mok K, Soon P, Franken A, Neubauer H, de Souza P, Becker TM. Endocrine Resistance in Breast Cancer: The Role of Estrogen Receptor Stability. Cells 2020; 9:cells9092077. [PMID: 32932819 PMCID: PMC7564140 DOI: 10.3390/cells9092077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.
Collapse
Affiliation(s)
- Sarah A. Jeffreys
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence: ; Tel.: +61-2-873-89022
| | - Branka Powter
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
| | - Bavanthi Balakrishnar
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Kelly Mok
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Patsy Soon
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- Department of Surgery, Bankstown Hospital, Bankstown NSW 2200, Australia
| | - André Franken
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hans Neubauer
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Paul de Souza
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong NSW 2522, Australia
| | - Therese M. Becker
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
| |
Collapse
|
9
|
Kastrati I, Joosten SEP, Semina SE, Alejo LH, Brovkovych SD, Stender JD, Horlings HM, Kok M, Alarid ET, Greene GL, Linn SC, Zwart W, Frasor J. The NF-κB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen Receptor-Positive Breast Cancers. Mol Cancer Res 2020; 18:1018-1027. [PMID: 32245803 PMCID: PMC7335344 DOI: 10.1158/1541-7786.mcr-19-1082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to identify critical pathways promoting survival of tamoxifen-tolerant, estrogen receptor α positive (ER+) breast cancer cells, which contribute to therapy resistance and disease recurrence. Gene expression profiling and pathway analysis were performed in ER+ breast tumors of patients before and after neoadjuvant tamoxifen treatment and demonstrated activation of the NF-κB pathway and an enrichment of epithelial-to mesenchymal transition (EMT)/stemness features. Exposure of ER+ breast cancer cell lines to tamoxifen, in vitro and in vivo, gives rise to a tamoxifen-tolerant population with similar NF-κB activity and EMT/stemness characteristics. Small-molecule inhibitors and CRISPR/Cas9 knockout were used to assess the role of the NF-κB pathway and demonstrated that survival of tamoxifen-tolerant cells requires NF-κB activity. Moreover, this pathway was essential for tumor recurrence following tamoxifen withdrawal. These findings establish that elevated NF-κB activity is observed in breast cancer cell lines under selective pressure with tamoxifen in vitro and in vivo, as well as in patient tumors treated with neoadjuvant tamoxifen therapy. This pathway is essential for survival and regrowth of tamoxifen-tolerant cells, and, as such, NF-κB inhibition offers a promising approach to prevent recurrence of ER+ tumors following tamoxifen exposure. IMPLICATIONS: Understanding initial changes that enable survival of tamoxifen-tolerant cells, as mediated by NF-κB pathway, may translate into therapeutic interventions to prevent resistance and relapse, which remain major causes of breast cancer lethality.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Stacey E P Joosten
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Luis H Alejo
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Svitlana D Brovkovych
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California
| | - Hugo M Horlings
- Division of Molecular Pathology, Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Sabine C Linn
- Division of Molecular Pathology, Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Kastrati I, Semina S, Gordon B, Smart E. Insights into how phosphorylation of estrogen receptor at serine 305 modulates tamoxifen activity in breast cancer. Mol Cell Endocrinol 2019; 483:97-101. [PMID: 30659843 PMCID: PMC6368394 DOI: 10.1016/j.mce.2019.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Estrogen receptor (ER) is the most important factor in the pathophysiology of breast cancer. Consequently, modulation of ER activity has been exploited to develop drugs against ER + breast cancer, such as tamoxifen, referred to as endocrine therapies. With deeper understanding of ER mechanism of action, posttranslational modifications (PTMs) are increasingly recognized as important in mediating ER activity. Some ER PTMs such as phosphorylation, are studied in the context of ligand-independent ER activity. However, they also play a pivotal role in defining the actions and outcome of the antiestrogen-bound ER. The complexity of these actions is increasing as new PTMs are identified, yet the functional consequences and clinical implications are not fully understood. This review will examine and summarize new emerging mechanistic knowledge and clinical data in breast cancer on how these PTMs affect antiestrogen-ER activity, with an emphasis on phosphorylation of serine 305 (S305). This phosphorylation site represents an integrated hub of oncogenic signaling to modulate ER conformation, dimerization, coregulators, and DNA binding to profoundly reduce sensitivity to endocrine therapy. Consequently, (i) S305 has the potential to become a useful marker of tamoxifen response, and (ii) blocking S305 phosphorylation defines a new therapeutic strategy to overcome tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.
| | - Svetlana Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily Smart
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S, Andò S. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett 2018; 428:12-20. [DOI: 10.1016/j.canlet.2018.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
|
12
|
Pejerrey SM, Dustin D, Kim JA, Gu G, Rechoum Y, Fuqua SAW. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer. Discov Oncol 2018; 9:215-228. [PMID: 29736566 DOI: 10.1007/s12672-017-0306-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.
Collapse
Affiliation(s)
- Sasha M Pejerrey
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Derek Dustin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Jin-Ah Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Guowei Gu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Yassine Rechoum
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Gelsomino L, Gu G, Rechoum Y, Beyer AR, Pejerrey SM, Tsimelzon A, Wang T, Huffman K, Ludlow A, Andò S, Fuqua SAW. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling. Breast Cancer Res Treat 2016; 157:253-265. [PMID: 27178332 DOI: 10.1007/s10549-016-3829-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yassine Rechoum
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda R Beyer
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sasha M Pejerrey
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anna Tsimelzon
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tao Wang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kenneth Huffman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Ludlow
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Dan L Duncan Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Panza S, Malivindi R, Chemi F, Rago V, Giordano C, Barone I, Bonofiglio D, Gelsomino L, Giordano F, Andò S, Catalano S. Glucocorticoid Receptor as a Potential Target to Decrease Aromatase Expression and Inhibit Leydig Tumor Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1328-39. [PMID: 26968343 DOI: 10.1016/j.ajpath.2015.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/03/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023]
Abstract
Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesca Chemi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Health Center, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy; Health Center, University of Calabria, Arcavacata di Rende, Cosenza, Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
15
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program. Arch Gynecol Obstet 2015; 293:271-81. [DOI: 10.1007/s00404-015-3879-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
|
17
|
Abstract
Approximately 70% of breast cancers are oestrogen receptor α (ER) positive, and are, therefore, treated with endocrine therapies. However, about 25% of patients with primary disease and almost all patients with metastases will present with or eventually develop endocrine resistance. Despite the magnitude of this clinical challenge, the mechanisms underlying the development of resistance remain largely unknown. In the past 2 years, several studies unveiled gain-of-function mutations in ESR1, the gene encoding the ER, in approximately 20% of patients with metastatic ER-positive disease who received endocrine therapies, such as tamoxifen and aromatase inhibitors. These mutations are clustered in a 'hotspot' within the ligand-binding domain (LBD) of the ER and lead to ligand-independent ER activity that promotes tumour growth, partial resistance to endocrine therapy, and potentially enhanced metastatic capacity; thus, ER LBD mutations might account for a mechanism of acquired endocrine resistance in a substantial fraction of patients with metastatic disease. In general, the absence of detectable ESR1 mutations in patients with treatment-naive disease, and the correlation between the frequency of patients with tumours harbouring these mutations and the number of endocrine treatments received suggest that, under selective treatment pressure, clonal expansion of rare mutant clones occurs, leading to resistance. Preclinical and clinical development of rationale-based novel therapeutic strategies that inhibit these ER mutants has the potential to substantially improve treatment outcomes. We discuss the contribution of ESR1 mutations to the development of acquired resistance to endocrine therapy, and evaluate how mutated ER can be detected and targeted to overcome resistance and improve patient outcomes.
Collapse
|
18
|
Bennesch MA, Picard D. Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol Endocrinol 2015; 29:349-63. [PMID: 25625619 DOI: 10.1210/me.2014-1315] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid receptors are prototypical ligand-dependent transcription factors and a textbook example for allosteric regulation. According to this canonical model, binding of cognate steroid is an absolute requirement for transcriptional activation. Remarkably, the simple one ligand-one receptor model could not be farther from the truth. Steroid receptors, notably the sex steroid receptors, can receive multiple inputs. Activation of steroid receptors by other signals, working through their own signaling pathways, in the absence of the cognate steroids, represents the most extreme form of signaling cross talk. Compared with cognate steroids, ligand-independent activation pathways produce similar but not identical outputs. Here we review the phenomena and discuss what is known about the underlying molecular mechanisms and the biological significance. We hypothesize that steroid receptors may have evolved to be trigger happy. In addition to their cognate steroids, many posttranslational modifications and interactors, modulated by other signals, may be able to tip the balance.
Collapse
Affiliation(s)
- Marcela A Bennesch
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
19
|
Blackmore JK, Karmakar S, Gu G, Chaubal V, Wang L, Li W, Smith CL. The SMRT coregulator enhances growth of estrogen receptor-α-positive breast cancer cells by promotion of cell cycle progression and inhibition of apoptosis. Endocrinology 2014; 155:3251-61. [PMID: 24971610 PMCID: PMC4138560 DOI: 10.1210/en.2014-1002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SMRT coregulator functions as a dual coactivator and corepressor for estrogen receptor-α (ERα) in a gene-specific manner, and in several studies its elevated expression correlates with poor outcome for breast cancer patients. A specific role of SMRT in breast cancer progression has not been elucidated, but SMRT knock-down limits estradiol-dependent growth of MCF-7 breast cancer cells. In this study, small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) approaches were used to determine the effects of SMRT depletion on growth of ERα-positive MCF-7 and ZR-75-1 breast cancer cells, as well as the ERα-negative MDA-MB-231 breast cancer line. Depletion of SMRT inhibited growth of ERα-positive cells grown in monolayer but had no effect on growth of the ERα-negative cells. Reduced SMRT levels also negatively impacted the anchorage-independent growth of MCF-7 cells as assessed by soft agar colony formation assays. The observed growth inhibitions were due to a loss of estradiol-induced progression through the G1/S transition of the cell cycle and increased apoptosis in SMRT-depleted compared with control cells. Gene expression analyses indicated that SMRT inhibits apoptosis by a coordinated regulation of genes involved in apoptosis. Functioning as a dual coactivator for anti-apoptotic genes and corepressor for pro-apoptotic genes, SMRT can limit apoptosis. Together these data indicate that SMRT promotes breast cancer progression through multiple pathways leading to increased proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Julia K Blackmore
- Molecular and Cellular Biology (J.K.B., S.K., V.C., C.L.S.), Lester and Sue Smith Breast Center (G.G.), and Dan L Duncan Cancer Center (L.W., W.L.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
20
|
Knox AJ, Scaling AL, Pinto MP, Bliesner BS, Haughian JM, Abdel-Hafiz HA, Horwitz KB. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Breast Cancer Res 2014; 16:418. [PMID: 25116921 PMCID: PMC4187339 DOI: 10.1186/s13058-014-0418-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/22/2014] [Indexed: 12/27/2022] Open
Abstract
Introduction Many Luminal breast cancers are heterogeneous, containing substantial numbers of estrogen (ER) and progesterone (PR) receptor-negative cells among the ER+ PR+ ones. One such subpopulation we call “Luminobasal” is ER-, PR- and cytokeratin 5 (CK5)-positive. It is not targeted for treatment. Methods To address the relationships between ER+PR+CK5– and ER–PR–CK5+ cells in Luminal cancers and tightly control their ratios we generated isogenic pure Luminal (pLUM) and pure Luminobasal (pLB) cells from the same parental Luminal human breast cancer cell line. We used high-throughput screening to identify pLB-specific drugs and examined their efficacy alone and in combination with hormone therapy in mixed-cell tumor models. Results We show that pLUM and MCF7 cells suppress proliferation of pLB cells in mixed-cell 3D colonies in vitro and that pLUM cells suppress growth of pLB cells in mixed-cell xenografts in vivo. High-throughput screening of 89 FDA-approved oncology drugs shows that pLB cells are sensitive to monotherapy with the epidermal growth factor receptor (EGFR) inhibitors gefitinib and erlotinib. By exploiting mixed-cell 3D colonies and mixed-cell solid mouse tumors models we demonstrate that combination therapy with gefitinib plus the anti-estrogen fulvestrant constitutes a robust treatment strategy. Conclusions We propose that response to combination endocrine/EGFR inhibitor therapies in heterogeneous Luminal cancers may improve long-term survival in patients whose primary tumors have been preselected for appropriate biomarkers, including ER, PR, CK5 and EGFR. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0418-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Catalano S, Giordano C, Panza S, Chemi F, Bonofiglio D, Lanzino M, Rizza P, Romeo F, Fuqua SAW, Maggiolini M, Andò S, Barone I. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res Treat 2014; 146:273-85. [PMID: 24928526 DOI: 10.1007/s10549-014-3017-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fuqua SAW, Gu G, Rechoum Y. Estrogen receptor (ER) α mutations in breast cancer: hidden in plain sight. Breast Cancer Res Treat 2014; 144:11-9. [PMID: 24487689 DOI: 10.1007/s10549-014-2847-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/18/2014] [Indexed: 11/25/2022]
Abstract
The idea that somatic ERα mutations could play an important role in the evolution of hormone-dependent breast cancers was proposed some years ago (Fuqua J Mammary Gland Biol Neoplasia 6(4):407-417, 2001; Dasgupta et al. Annu Rev Med 65:279-292, 2013), but has remained controversial until recently. A significant amount of new data has confirmed these initial observations and shown their significance, along with much additional work relevant to the treatment of breast cancer. Thus, it is the purpose of this review to summarize the research to date on the existence and clinical consequences of ERα mutations in primary and metastatic breast cancer.
Collapse
Affiliation(s)
- Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
23
|
Dynamic regulation of steroid hormone receptor transcriptional activity by reversible SUMOylation. VITAMINS AND HORMONES 2013; 93:227-61. [PMID: 23810010 DOI: 10.1016/b978-0-12-416673-8.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription complexes containing steroid hormone receptors (SRs) have been well characterized at selected canonical target genes. More recently, the advent of whole genome technologies has allowed for complete SR transcriptome analyses in diverse cell types and in response to a variety of cellular stimuli. These types of studies have revealed little overlap between the tissue or cell type-specific transcriptomes of a given SR, suggesting that all SRs are highly context-dependent transcription factors. However, the mechanisms controlling SR promoter selectivity have not been fully elucidated. Many factors may influence SR promoter selectivity, including chromatin structure, cofactor availability, and posttranslational modifications to SRs and/or their numerous coregulators; this review focuses on the impact that covalent attachment of small ubiquitin-like modifier (SUMO) moieties to SRs (i.e., SUMOylation) have on the transcriptional regulation of SR target genes.
Collapse
|
24
|
Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, Sisci D, De Amicis F, Fuqua SAW, Catalano S, Andò S. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol 2012; 7:379-91. [PMID: 23228483 DOI: 10.1016/j.molonc.2012.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Panno ML, Giordano F, Rizza P, Pellegrino M, Zito D, Giordano C, Mauro L, Catalano S, Aquila S, Sisci D, De Amicis F, Vivacqua A, Fuqua SWA, Andò S. Bergapten induces ER depletion in breast cancer cells through SMAD4-mediated ubiquitination. Breast Cancer Res Treat 2012; 136:443-55. [PMID: 23053665 DOI: 10.1007/s10549-012-2282-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
ERα function is crucial for the development of normal mammary gland as well as in the process of progression of breast cancer cells. Signals that target receptor levels contribute to regulate estrogens effects in the cells. An intricate cross-regulation has been documented between ERα and TGF-β down-stream molecules: SMAD2, SMAD3, and SMAD4, that can bind ERα and regulate their signaling. Thus, identification of natural anticancer drugs able to influence the latter molecule might provide alternative choices for breast cancer treatment. Taking into account our previous published data we wanted to study the effect of 5-Methoxypsoralen (bergapten) on ERα and on TGF-β pathway. We reported that bergapten, a coumarin containing compound, effectively depletes ERα in MCF-7 breast cancer sensitive cells and in tamoxifen-resistant clone. The decrease of ERα protein after bergapten treatment results from the ubiquitine-proteasome pathway as demonstrated by the use of MG-132. IP experiments with ER antibody, demonstrated that the protein has physical interaction with SMAD4 and poly-ubiquitine and the amount of ubiquitinated receptor, linked to SMAD4, is greater under bergapten. The crucial role played by SMAD4, in this process, emerges from the observation that in breast cancer cells, silencing of SMAD4, resulted in increased expression of endogenous ERα in both control and bergapten-treated cells, compared to wild- type cells. The same results were confirmed in siRNA TGF-β RII cells. The results suggest a novel negative regulation of ERα by TGF-β/SMAD4 in breast cancer cells and indicate that the SMAD4 protein is involved in the degradation of ERα induced by bergapten. We propose that bergapten may efficiently act as a natural antitumoral agent, able to deplete ERα from breast cancer tamoxifen-sensitive and resistant cells, thereby retraining the effect of membrane signals targeting ERα and in such way its mitogenic potentiality.
Collapse
Affiliation(s)
- M L Panno
- Department of Cellular Biology, University of Calabria, Via P. Bucci, 87036, Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Held JM, Britton DJ, Scott GK, Lee EL, Schilling B, Baldwin MA, Gibson BW, Benz CC. Ligand binding promotes CDK-dependent phosphorylation of ER-alpha on hinge serine 294 but inhibits ligand-independent phosphorylation of serine 305. Mol Cancer Res 2012; 10:1120-32. [PMID: 22669764 DOI: 10.1158/1541-7786.mcr-12-0099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorylation of estrogen receptor-α (ERα) is critical for its transcription factor activity and may determine its predictive and therapeutic value as a biomarker for ERα-positive breast cancers. Recent attention has turned to the poorly understood ERα hinge domain, as phosphorylation at serine 305 (Ser305) associates with poor clinical outcome and endocrine resistance. We show that phosphorylation of a neighboring hinge domain site, Ser294, analyzed by multiple reaction monitoring mass spectrometry of ERα immunoprecipitates from human breast cancer cells is robustly phosphorylated exclusively by ligand (estradiol and tamoxifen) activation of ERα and not by growth factor stimulation (EGF, insulin, heregulin-β). In a reciprocal fashion, Ser305 phosphorylation is induced by growth factors but not ligand activation of ERα. Phosphorylation at Ser294 and Ser305 is suppressed upon co-stimulation by EGF and ligand, respectively, unlike the N-terminal (AF-1) domain Ser118 and Ser167 sites of ERα where phosphorylation is enhanced by ligand and growth factor co-stimulation. Inhibition of cyclin-dependent kinases (CDK) by roscovitine or SNS-032 suppresses ligand-activated Ser294 phosphorylation without affecting Ser118 or Ser104/Ser106 phosphorylation. Likewise, cell-free studies using recombinant ERα and specific cyclin-CDK complexes suggest that Ser294 phosphorylation is primarily induced by the transcription-regulating and cell-cycle-independent kinase CDK7. Thus, CDK-dependent phosphorylation at Ser294 differentiates ligand-dependent from ligand-independent activation of Ser305 phosphorylation, showing that hinge domain phosphorylation patterns uniquely inform on the various ERα activation mechanisms thought to underlie the biologic and clinical diversity of hormone-dependent breast cancers.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. NUCLEAR RECEPTOR SIGNALING 2012; 10:e001. [PMID: 22438791 PMCID: PMC3309075 DOI: 10.1621/nrs.10001] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/19/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy's Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
28
|
Barone I, Catalano S, Gelsomino L, Marsico S, Giordano C, Panza S, Bonofiglio D, Bossi G, Covington KR, Fuqua SAW, Andò S. Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Res 2012; 72:1416-27. [PMID: 22282662 DOI: 10.1158/0008-5472.can-11-2558] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity confers risks to cancer development and progression but the mechanisms underlying these risks remain unclear. In this study, we identify a role for the obesity cytokine leptin, which has been implicated previously in breast cancer development, as a determinant for the tumor-promoting activity of cancer-associated fibroblasts (CAF) in both wild-type (WT) and K303R mutant estrogen receptor-α (ERα)-expressing breast cancer cells. Human CAFs stimulated a greater increase in the proliferation and migration of breast cancer cells expressing the K303R-ERα hyperactive receptor than WT-ERα-expressing cells. A concomitant increase was seen in leptin receptor isoform expression and activation of the leptin signaling pathway in cells expressing K303R-ERα compared with WT-ERα, correlating with leptin effects on cell growth, motility, and invasiveness in mutant cells. Epidermal growth factor and other factors secreted by K303R-ERα cells stimulated CAF proliferation, migration, and subsequent leptin secretion. Moreover, K303R-ERα expression generated a leptin hypersensitive phenotype in vivo. Together, our results reveal a bidirectional cross-talk between breast cancer cells and "educated" CAFs that drives tumor progression via leptin signaling. In elucidating a mechanism that connects obesity and cancer, these findings reinforce the concept that blocking cancer-stromal cell communication may represent an effective strategy for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Centro Sanitario, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vivacqua A, Romeo E, De Marco P, De Francesco EM, Abonante S, Maggiolini M. GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat 2011; 133:1025-35. [PMID: 22147081 DOI: 10.1007/s10549-011-1901-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/24/2011] [Indexed: 02/06/2023]
Abstract
Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, CS, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L. Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev 2011; 32:597-622. [PMID: 21680538 DOI: 10.1210/er.2010-0016] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen signaling pathways, because of their central role in regulating the growth and survival of breast tumor cells, have been identified as suitable and efficient targets for cancer therapies. Agents blocking estrogen activity are already widely used clinically, and many new molecules have entered clinical trials, but intrinsic or acquired resistance to treatment limits their efficacy. The basic molecular studies underlying estrogen signaling have defined the critical role of estrogen receptors (ER) in many aspects of breast tumorigenesis. However, important knowledge gaps remain about the role of posttranslational modifications (PTM) of ER in initiation and progression of breast carcinogenesis. Whereas major attention has been focused on the phosphorylation of ER, many other PTM (such as acetylation, ubiquitination, sumoylation, methylation, and palmitoylation) have been identified as events modifying ER expression and stability, subcellular localization, and sensitivity to hormonal response. This article will provide an overview of the current and emerging knowledge on ER PTM, with a particular focus on their deregulation in breast cancer. We also discuss their clinical relevance and the functional relationship between PTM. A thorough understanding of the complete picture of these modifications in ER carcinogenesis might not only open new avenues for identifying new markers for prognosis or prediction of response to endocrine therapy but also could promote the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Muriel Le Romancer
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment Cheney D, 28 rue Laennec, 69373 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
31
|
de Leeuw R, Neefjes J, Michalides R. A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer 2011; 2011:232435. [PMID: 22295213 PMCID: PMC3262574 DOI: 10.4061/2011/232435] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2011] [Indexed: 01/06/2023] Open
Abstract
About two thirds of all human breast cancer cases are estrogen receptor positive. The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERα and how these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
De Amicis F, Giordano F, Vivacqua A, Pellegrino M, Panno ML, Tramontano D, Fuqua SAW, Andò S. Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells. FASEB J 2011; 25:3695-707. [PMID: 21737614 DOI: 10.1096/fj.10-178871] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Agents to counteract acquired resistance to hormonal therapy for breast cancer would substantially enhance the long-term benefits of hormonal therapy. In the present study, we demonstrate how resveratrol (Res) inhibits human breast cancer cell proliferation, including MCF-7 tamoxifen-resistant cells (IC(50) values for viability were in the 30-45 μM range). We show that Res, through p38(MAPK) phosphorylation, causes induction of p53, which recruits at the estrogen receptor α (ERα) proximal promoter, leading to an inhibition of ERα expression in terms of mRNA and protein content. These events appear specifically p53 dependent, since they are drastically abrogated with p53-targeting siRNA. Coimmunoprecipitation assay showed specific interaction between p53, the Sin3A corepressor, and histone deacetylase 1 (HDAC1), which was phosphorylated. The enhancement of the tripartite complex p53/Sin3A/HDAC1, together with NF-Y on Res treatment, was confirmed by chromatin immunoprecipitation analyses, with a concomitant release of Sp1 and RNA polymerase II, thereby inhibiting the cell transcriptional machinery. The persistence of such effects in MCF-7 tamoxifen-resistant cells at a higher extent than parental MCF-7 cells addresses how Res may be considered a useful pharmacological tool to be exploited in the adjuvant settings for treatment of breast cancer developing hormonal resistance.
Collapse
Affiliation(s)
- Francesca De Amicis
- Centro Sanitario, Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (CS) 87030, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Weiss A, Neuberg P, Philippot S, Erbacher P, Weill CO. Intracellular peptide delivery using amphiphilic lipid-based formulations. Biotechnol Bioeng 2011; 108:2477-87. [PMID: 21520021 DOI: 10.1002/bit.23182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/28/2011] [Accepted: 04/11/2011] [Indexed: 11/07/2022]
Abstract
Peptides, highly diverse by their nature, are important biochemical and pharmaceutical tools: ligands for cellular receptors, transcription factors, immunosuppressants, vaccines, etc. As the majority of their targets are intracellular, peptides need to cross the plasma membrane and gain access to the cytoplasm. However, due to their physicochemical properties, most peptides need to be entrapped by a molecular vehicle to be able to reach the cytosol compartment. In this study, we present new biological tools to enhance intracellular peptides delivery. Based on electrostatic interactions, two complementary types of amphiphilic molecules have been designed as delivery vehicles. A diverse set of fluorescently labeled peptides have successfully been delivered. This opens the avenue for the use of peptides combined to delivery vehicles as therapeutic aids.
Collapse
Affiliation(s)
- Amélie Weiss
- Polyplus-transfection SA, Bioparc, Bd Sébastien Brant, BP 90018, 67401 Illkirch Cedex, France; telephone: +33-390-406-472; fax: +33-390-406-181
| | | | | | | | | |
Collapse
|
34
|
Giordano C, Catalano S, Panza S, Vizza D, Barone I, Bonofiglio D, Gelsomino L, Rizza P, Fuqua SAW, Andò S. Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 2011; 30:4129-40. [PMID: 21499302 DOI: 10.1038/onc.2011.124] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tamoxifen (Tam) treatment is a first-line endocrine therapy for estrogen receptor-α-positive breast cancer patients. Unfortunately, resistance frequently occurs and is often related with overexpression of the membrane tyrosine kinase receptor HER2. This is the rationale behind combined treatments with endocrine therapy and novel inhibitors that reduce HER2 expression and signaling and thus inhibit Tam-resistant breast cancer cell growth. In this study, we show that activation of farnesoid X receptor (FXR), by the primary bile acid chenodeoxycholic acid (CDCA) or the synthetic agonist GW4064, inhibited growth of Tam-resistant breast cancer cells (termed MCF-7 TR1), which was used as an in vitro model of acquired Tam resistance. Our results demonstrate that CDCA treatment significantly reduced both anchorage-dependent and anchorage-independent epidermal growth factor (EGF)-induced growth in MCF-7 TR1 cells. Furthermore, results from western blot analysis and real-time reverse transcription-PCR revealed that CDCA treatment reduced HER2 expression and inhibited EGF-mediated HER2 and p42/44 mitogen-activated protein kinase (MAPK) phosphorylation in these Tam-resistant breast cancer cells. Transient transfection experiments, using a vector containing the human HER2 promoter region, showed that CDCA treatment downregulated basal HER2 promoter activity. This occurred through an inhibition of nuclear factor-κB transcription factor binding to its specific responsive element located in the HER2 promoter region as revealed by mutagenesis studies, electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Collectively, these data suggest that FXR ligand-dependent activity, blocking HER2/MAPK signaling, may overcome anti-estrogen resistance in human breast cancer cells and could represent a new therapeutic tool to treat breast cancer patients that develop resistance.
Collapse
Affiliation(s)
- C Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Barone I, Brusco L, Gu G, Selever J, Beyer A, Covington KR, Tsimelzon A, Wang T, Hilsenbeck SG, Chamness GC, Andò S, Fuqua SAW. Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. J Natl Cancer Inst 2011; 103:538-52. [PMID: 21447808 PMCID: PMC3071355 DOI: 10.1093/jnci/djr058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Estrogen receptor (ER) α is a successful therapeutic target in breast cancer, but patients eventually develop resistance to antiestrogens such as tamoxifen. METHODS To identify genes whose expression was associated with the development of tamoxifen resistance and metastasis, we used microarrays to compare gene expression in four primary tumors from tamoxifen-treated patients whose breast cancers did not recur vs five metastatic tumors from patients whose cancers progressed during adjuvant tamoxifen treatment. Because Rho guanine dissociation inhibitor (GDI) α was underexpressed in the tamoxifen-resistant group, we stably transfected ERα-positive MCF-7 breast cancer cells with a plasmid encoding a short hairpin (sh) RNA to silence Rho GDIα expression. We used immunoblots and transcription assays to examine the role of Rho GDIα in ER-related signaling and growth of cells in vitro and as xenografts in treated nude mice (n = 8-9 per group) to examine the effects of Rho GDIα blockade on hormone responsiveness and metastatic behavior. The time to tumor tripling as the time in weeks from randomization to a threefold increase in total tumor volume over baseline was examined in treated mice. The associations of Rho GDIα and MTA2 levels with tamoxifen resistance were examined in microarray data from patients. All statistical tests were two-sided. RESULTS Rho GDIα was expressed at lower levels in ERα-positive tumors that recurred during tamoxifen treatment than in ERα-positive tamoxifen-sensitive primary tumors. MCF-7 breast cancer cells in which Rho GDIα expression had been silenced were tamoxifen-resistant, had increased Rho GTPase and p21-activated kinase 1 activity, increased phosphorylation of ERα at serine 305, and enhanced tamoxifen-induced ERα transcriptional activity compared with control cells. MCF-7 cells in which Rho GDIα expression was silenced metastasized with high frequency when grown as tumor xenografts. When mice were treated with estrogen or estrogen withdrawal, tripling times for xenografts from cells with Rho GDIα silencing were similar to those from vector-containing control cells; however, tripling times were statistically significantly faster than control when mice were treated with tamoxifen (median tripling time for tumors with Rho GDIα small interfering RNA = 2.34 weeks; for control tumors = not reached, hazard ratio = 4.13, 95% confidence interval = 1.07 to 15.96, P = .040 [adjusted for multiple comparisons, P = .119]). Levels of the metastasis-associated protein MTA2 were also increased upon Rho GDIα silencing, and combined Rho GDIα and MTA2 levels were associated with recurrence in 250 tamoxifen-treated patients. CONCLUSION Loss of Rho GDIα enhances metastasis and resistance to tamoxifen via effects on both ERα and MTA2 in models of ERα-positive breast cancer and in tumors of tamoxifen-treated patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/metabolism
- Breast Neoplasms/prevention & control
- Cell Line, Tumor
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogen Receptor alpha/drug effects
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genome-Wide Association Study
- Guanine Nucleotide Dissociation Inhibitors/genetics
- Guanine Nucleotide Dissociation Inhibitors/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Mice
- Mice, Nude
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/prevention & control
- Odds Ratio
- Phenotype
- Plasmids
- Protein Array Analysis
- RNA, Small Interfering/metabolism
- Random Allocation
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retrospective Studies
- Secondary Prevention/methods
- Selective Estrogen Receptor Modulators/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Time Factors
- Transcriptional Activation
- Transplantation, Heterologous
- Tumor Stem Cell Assay
- rho GTP-Binding Proteins/metabolism
- rho Guanine Nucleotide Dissociation Inhibitor alpha
- rho-Specific Guanine Nucleotide Dissociation Inhibitors
Collapse
Affiliation(s)
- Ines Barone
- Lester and Sue Smith Breast Center, Breast Center, Baylor College of Medicine, Houston, TX 77479, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ostad SN, Dehnad S, Nazari ZE, Fini ST, Mokhtari N, Shakibaie M, Shahverdi AR. Cytotoxic Activities of Silver Nanoparticles and Silver Ions in Parent and Tamoxifen-Resistant T47D Human Breast Cancer Cells and Their Combination Effects with Tamoxifen against Resistant Cells. Avicenna J Med Biotechnol 2010; 2:187-96. [PMID: 23408729 PMCID: PMC3558162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022] Open
Abstract
Studies on biomedical applications of nanoparticles are growing with a rapid pace. In medicine, nanoparticles may be the solution for multi-drug-resistance which is still a major drawback in chemotherapy of cancer. In the present study, we investigated the potential cytotoxic effect of silver nanoparticles (Ag NPs) and silver ions (Ag(+)) in both parent and tamoxifen-resistant T47D cells in presence and absence of tamoxifen. Ag NPs were synthesized (< 28 nm) and MTT assay was carried out. The associated IC(50) values were found to be: 6.31 µg/ml for Ag NPs/parent cells, 37.06 µg/ml for Ag NPs/tamoxifen-resistant cells, 33.06 µg/ml for Ag(+)/parent cells and 10.10 µg/ml for Ag(+)/resistant cells. As a separate experiment, the effect of subinhibitory concentrations of Ag NPs and Ag(+) on the proliferation of tamoxifen-resistant cells was evaluated at non-toxic concentrations of tamoxifen. Our results suggested that in non-cytotoxic concentrations of silver nanomaterials and tamoxifen, the combinations of Ag(+)-tamoxifen and Ag NPs-tamoxifen are still cytotoxic. This finding may be of great potential benefit in chemotherapy of breast cancer; since much lower doses of tamoxifen may be needed to produce the same cytotoxic effect and side effects will be reduced.
Collapse
Affiliation(s)
- Seyed Naser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Dehnad
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Division, Azad Islamic University, Tehran, Iran
| | - Zeinab Esmail Nazari
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Tavajohi Fini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mokhtari
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Ghimenti C, Mello-Grand M, Regolo L, Zambelli A, Chiorino G. Absence of the K303R estrogen receptor α mutation in breast cancer patients exhibiting different responses to aromatase inhibitor anastrozole neoadjuvant treatment. Exp Ther Med 2010; 1:939-942. [PMID: 22993622 DOI: 10.3892/etm.2010.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/09/2010] [Indexed: 01/30/2023] Open
Abstract
Aromatase inhibitors, such as anastrozole, are established in the treatment of hormone-dependent breast cancer. However, approximately 20% of patients treated with anastrozole do not respond, and it remains impossible to accurately predict sensitivity. Thus, novel markers to predict response are required. The K303R estrogen receptor (ER)α mutation confers resistance to tamoxifen treatment. Moreover, K303R-expressing MCF-7 cells, transfected with an aromatase expression vector and stimulated with androstenedione (an aromatase substrate), were found to be resistant to the inhibitory effect of anastrozole. The aim of this study was to verify whether the presence of the K303R ERα mutation is associated with response to 3-month neoadjuvant treatment with anastrozole (Arimidex) in a cohort of post-menopausal breast cancer patients. Of 37 patients with ER(+) tumors, 19 showed a clinical response to anastrozole and 18 were resistant. Biopsies were obtained from tumors responding to the therapy or from non-responding tumors. None carried the K303R ERα mutation. To our knowledge, this is the first study to search for K303R ERα mutations in tumors clinically responsive or resistant to an aromatase inhibitor. Lack of the mutation leads us to believe that this mutation has in vivo biological significance in only a subset of breast cancers.
Collapse
Affiliation(s)
- Chiara Ghimenti
- Cancer Genomics Laboratory, Fondazione 'Edo ed Elvo Tempia Valenta', Biella
| | | | | | | | | |
Collapse
|
38
|
Zwart W, Theodorou V, Carroll JS. Estrogen receptor-positive breast cancer: a multidisciplinary challenge. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:216-30. [DOI: 10.1002/wsbm.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Barone I, Brusco L, Fuqua SAW. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res 2010; 16:2702-8. [PMID: 20427689 DOI: 10.1158/1078-0432.ccr-09-1753] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogens play a crucial role in regulating the growth and differentiation of breast cancers, with approximately two thirds of all breast tumors expressing the estrogen receptor alpha (ERalpha). Therefore, therapeutic strategies directed at inhibiting the action of ERalpha by using anti-estrogens such as tamoxifen, or reducing estrogens levels by using aromatase inhibitors, such as letrozole, anastrozole, or exemestane, are the standard treatments offered to women with ERalpha-positive cancer. However, not all patients respond to endocrine therapies (termed de novo resistance), and a large number of patients who do respond will eventually develop disease progression or recurrence while on therapy (acquired resistance). Recently, variant forms of the receptor have been identified owing to alternative splicing or gene mutation. This article reviews these variant receptors and their clinical relevance in resistance to endocrine therapy, by addressing their molecular cross-talk with growth factor receptors and signaling components. Understanding the complexity of receptor-mediated signaling has promise for new combined therapeutic options that focus on more efficient blockade of receptor cross-talk.
Collapse
Affiliation(s)
- Ines Barone
- Centro Sanitario and Department of Cellular Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | | | | |
Collapse
|
40
|
Phosphorylation of the mutant K303R estrogen receptor alpha at serine 305 affects aromatase inhibitor sensitivity. Oncogene 2010; 29:2404-14. [PMID: 20101208 PMCID: PMC2922934 DOI: 10.1038/onc.2009.520] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously identified a lysine to arginine transition at residue 303 (K303R) in ERα in invasive breast cancers, which confers resistance to the aromatase inhibitor (AI) anastrozole (Ana) when expressed in MCF-7 breast cancer cells. Here we show that AI resistance arises through an enhanced cross-talk of the IGF-1R/IRS-1/Akt pathway with ERα, and the serine (S) residue 305 adjacent to the K303R mutation plays a key role in mediating this cross-talk. The ERα S305 residue is an important site that modifies response to tamoxifen; thus, we questioned whether this site could also influence AI response. We generated stable transfectants expressing wild-type (WT), K303R ERα, or a double K303R/S305A mutant receptor, and found that the AI-resistant phenotype associated with expression of the K303R mutation was dependent on activation of S305 within the receptor. Ana significantly reduced growth in K303R/S305A-expressing cells. Preventing S305 phosphorylation with a blocking peptide inhibited IGF-1R/IRS-1/Akt activation, and also restored AI sensitivity. Our data suggest that the K303R mutation and the S305 ERα residue may be a novel determinant of aromatase inhibitor response in breast cancer, and blockade of S305 phosphorylation represents a new therapeutic strategy for treating tumors resistant to hormone therapy.
Collapse
|
41
|
Vivacqua A, Lappano R, De Marco P, Sisci D, Aquila S, De Amicis F, Fuqua SAW, Andò S, Maggiolini M. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells. Mol Endocrinol 2009; 23:1815-26. [PMID: 19749156 DOI: 10.1210/me.2009-0120] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barone I, Cui Y, Herynk MH, Corona-Rodriguez A, Giordano C, Selever J, Beyer A, Andò S, Fuqua SAW. Expression of the K303R estrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/Akt kinase pathway. Cancer Res 2009; 69:4724-32. [PMID: 19487288 DOI: 10.1158/0008-5472.can-08-4194] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aromatase inhibitors (AI) are rapidly becoming the first choice for hormonal treatment of estrogen receptor-alpha (ERalpha)-positive breast cancer in postmenopausal women. However, de novo and acquired resistance frequently occurs. We have previously identified a lysine to arginine transition at residue 303 (K303R) in ERalpha in premalignant breast lesions and invasive breast cancers, which confers estrogen hypersensitivity and resistance to tamoxifen treatment. Thus, we questioned whether resistance to AIs could arise in breast cancer cells expressing the ERalpha mutation. As preclinical models to directly test this possibility, we generated K303R-overexpressing MCF-7 cells stably transfected with an aromatase expression vector. Cells were stimulated with the aromatase substrate, androstenedione, with or without the AI anastrozole (Ana). We found that Ana decreased androstenedione-stimulated growth of wild-type cells, whereas K303R-expressing cells were resistant to the inhibitory effect of Ana on growth. We propose that a mechanism of resistance involves an increased binding between the mutant receptor and the p85alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K), leading to increased PI3K activity and activation of protein kinase B/Akt survival pathways. Inhibition of the selective "addiction" to the PI3K/Akt pathway reversed AI resistance associated with expression of the mutant receptor. Our findings suggest that the K303R ERalpha mutation might be a new predictive marker of response to AIs in mutation-positive breast tumors, and that targeting the PI3K/Akt pathway may be a useful strategy for treating patients with tumors resistant to hormone therapy.
Collapse
Affiliation(s)
- Ines Barone
- Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|