1
|
Chen YM, Qi S, Perrino S, Hashimoto M, Brodt P. Targeting the IGF-Axis for Cancer Therapy: Development and Validation of an IGF-Trap as a Potential Drug. Cells 2020; 9:cells9051098. [PMID: 32365498 PMCID: PMC7290707 DOI: 10.3390/cells9051098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF)-axis was implicated in cancer progression and identified as a clinically important therapeutic target. Several IGF-I receptor (IGF-IR) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signaling and compensatory signaling by the insulin receptor (IR) isoform A that can bind IGF-II and initiate mitogenic signaling. Here we briefly review the current state of IGF-targeting biologicals, discuss some factors that may be responsible for their poor performance in the clinic and outline the stepwise bioengineering and validation of an IGF-Trap—a novel anti-cancer therapeutic that could bypass these limitations. The IGF-Trap is a heterotetramer, consisting of the entire extracellular domain of the IGF-IR fused to the Fc portion of human IgG1. It binds human IGF-I and IGF-II with a three-log higher affinity than insulin and could inhibit IGF-IR driven cellular functions such as survival, proliferation and invasion in multiple carcinoma cell models in vitro. In vivo, the IGF-Trap has favorable pharmacokinetic properties and could markedly reduce metastatic outgrowth of colon and lung carcinoma cells in the liver, outperforming IGF-IR and ligand-binding monoclonal antibodies. Moreover, IGF-Trap dose-response profiles correlate with their bio-availability profiles, as measured by the IGF kinase receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. Our studies identify the IGF-Trap as a potent, safe, anti-cancer therapeutic that could overcome some of the obstacles encountered by IGF-targeting biologicals that have already been evaluated in clinical settings.
Collapse
Affiliation(s)
- Yinhsuan Michely Chen
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Shu Qi
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Stephanie Perrino
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Masakazu Hashimoto
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Pnina Brodt
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: ; Tel.: +1-514-934-1934
| |
Collapse
|
2
|
Hada M, Oh H, Pfeiffer RM, Falk RT, Fan S, Mullooly M, Pollak M, Geller B, Vacek PM, Weaver D, Shepherd J, Wang J, Fan B, Mahmoudzadeh AP, Malkov S, Herschorn S, Brinton LA, Sherman ME, Gierach GL. Relationship of circulating insulin-like growth factor-I and binding proteins 1-7 with mammographic density among women undergoing image-guided diagnostic breast biopsy. Breast Cancer Res 2019; 21:81. [PMID: 31337427 PMCID: PMC6651938 DOI: 10.1186/s13058-019-1162-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic density (MD) is a strong breast cancer risk factor that reflects fibroglandular and adipose tissue composition, but its biologic underpinnings are poorly understood. Insulin-like growth factor binding proteins (IGFBPs) are markers that may be associated with MD given their hypothesized role in breast carcinogenesis. IGFBPs sequester IGF-I, limiting its bioavailability. Prior studies have found positive associations between circulating IGF-I and the IGF-I:IGFBP-3 ratio and breast cancer risk. We evaluated the associations of IGF-I, IGFBP-3, and six other IGFBPs with MD. Methods Serum IGF measures were quantified in 296 women, ages 40–65, undergoing diagnostic image-guided breast biopsy. Volumetric density measures (MD-V) were assessed in pre-biopsy digital mammograms using single X-ray absorptiometry. Area density measures (MD-A) were estimated by computer-assisted thresholding software. Age, body mass index (BMI), and BMI2-adjusted linear regression models were used to examine associations of serum IGF measures with MD. Effect modification by BMI was also assessed. Results IGF-I and IGFBP-3 were not strongly associated with MD after BMI adjustment. In multivariable analyses among premenopausal women, IGFBP-2 was positively associated with both percent MD-V (β = 1.49, p value = 0.02) and MD-A (β = 1.55, p value = 0.05). Among postmenopausal women, positive relationships between IGFBP-2 and percent MD-V (β = 2.04, p = 0.003) were observed; the positive associations between IGFBP-2 and percent MD-V were stronger among lean women (BMI < 25 kg/m2) (β = 5.32, p = 0.0002; p interaction = 0.0003). Conclusions In this comprehensive study of IGFBPs and MD, we observed a novel positive association between IGFBP-2 and MD, particularly among women with lower BMI. In concert with in vitro studies suggesting a dual role of IGFBP-2 on breast tissue, promoting cell proliferation as well as inhibiting tumorigenesis, our findings suggest that further studies assessing the role of IGFBP-2 in breast tissue composition, in addition to IGF-1 and IGFBP-3, are warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manila Hada
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hannah Oh
- Division of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Ruth M Pfeiffer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roni T Falk
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaoqi Fan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Berta Geller
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Pamela M Vacek
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Donald Weaver
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | | | - Jeff Wang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Bo Fan
- University of California San Francisco, San Francisco, CA, USA
| | | | - Serghei Malkov
- University of California San Francisco, San Francisco, CA, USA
| | - Sally Herschorn
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Louise A Brinton
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gretchen L Gierach
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Taslim C, Weng DY, Brasky TM, Dumitrescu RG, Huang K, Kallakury BVS, Krishnan S, Llanos AA, Marian C, McElroy J, Schneider SS, Spear SL, Troester MA, Freudenheim JL, Geyer S, Shields PG. Discovery and replication of microRNAs for breast cancer risk using genome-wide profiling. Oncotarget 2018; 7:86457-86468. [PMID: 27833082 PMCID: PMC5349926 DOI: 10.18632/oncotarget.13241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 01/06/2023] Open
Abstract
Background Genome-wide miRNA expression may be useful for predicting breast cancer risk and/or for the early detection of breast cancer. Results A 41-miRNA model distinguished breast cancer risk in the discovery study (accuracy of 83.3%), which was replicated in the independent study (accuracy = 63.4%, P=0.09). Among the 41 miRNA, 20 miRNAs were detectable in serum, and predicted breast cancer occurrence within 18 months of blood draw (accuracy 53%, P=0.06). These risk-related miRNAs were enriched for HER-2 and estrogen-dependent breast cancer signaling. Materials and Methods MiRNAs were assessed in two cross-sectional studies of women without breast cancer and a nested case-control study of breast cancer. Using breast tissues, a multivariate analysis was used to model women with high and low breast cancer risk (based upon Gail risk model) in a discovery study of women without breast cancer (n=90), and applied to an independent replication study (n=71). The model was then assessed using serum samples from the nested case-control study (n=410). Conclusions Studying breast tissues of women without breast cancer revealed miRNAs correlated with breast cancer risk, which were then found to be altered in the serum of women who later developed breast cancer. These results serve as proof-of-principle that miRNAs in women without breast cancer may be useful for predicting breast cancer risk and/or as an adjunct for breast cancer early detection. The miRNAs identified herein may be involved in breast carcinogenic pathways because they were first identified in the breast tissues of healthy women.
Collapse
Affiliation(s)
- Cenny Taslim
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Kun Huang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Shiva Krishnan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adana A Llanos
- Department of Epidemiology, Rutgers University, New Brunswick, NJ, USA
| | - Catalin Marian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Joseph McElroy
- Center for Biostatistics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Scott L Spear
- Department of Plastic Surgery, Georgetown University Hospital, Washington, DC, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jo L Freudenheim
- Departement of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Papadakis GZ, Mavroudis D, Georgoulias V, Souglakos J, Alegakis AK, Samonis G, Bagci U, Makrigiannakis A, Zoras O. Serum IGF-1, IGFBP-3 levels and circulating tumor cells (CTCs) in early breast cancer patients. Growth Horm IGF Res 2017; 33:28-34. [PMID: 28258988 DOI: 10.1016/j.ghir.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. DESIGN 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs' presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs' presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). RESULTS Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman's rho=0.361, p<0.001) with each other, while presenting significant differences across age groups (all p values<0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p=0.558) or after completion (p=0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p=0.487) or after (p=0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS and IGF-1(DFI: p=0.499; OS: p=0.220) or IGFBP-3 (DFI: p=0.900; OS: p=0.406) serum levels. CONCLUSIONS IGF-1 and IGFBP-3 serum levels before initiation of adjuvant chemotherapy are not indicative of CTCs' presence in the blood and do not correlate with clinical outcome of women with early-stage breast cancer.
Collapse
Affiliation(s)
- Georgios Z Papadakis
- Faculty of Medicine, University of Crete, Greece; Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, School of Medicine, University of Crete, Greece; Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | - Vasilios Georgoulias
- Department of Medical Oncology, University General Hospital of Heraklion, School of Medicine, University of Crete, Greece; Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | - John Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, School of Medicine, University of Crete, Greece; Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | - Athanasios K Alegakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - George Samonis
- Department of Internal Medicine, University of Crete, Heraklion, Greece
| | - Ulas Bagci
- Center for Research in Computer Vision (CRCV), Electrical and Computer Science Department, University of Central Florida (UCF), Orlando, FL 32816, USA
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, Heraklion, Greece
| | - Odysseas Zoras
- Department of Surgical Oncology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
5
|
Song MA, Brasky TM, Marian C, Weng DY, Taslim C, Dumitrescu RG, Llanos AA, Freudenheim JL, Shields PG. Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women. Epigenetics 2016; 10:1177-87. [PMID: 26680018 DOI: 10.1080/15592294.2015.1121362] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors, little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n = 61) and AAs (n = 22). Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic differences to racial disparities in breast cancer.
Collapse
Affiliation(s)
- Min-Ae Song
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Theodore M Brasky
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Catalin Marian
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA.,b Biochemistry and Pharmacology Department ; Victor Babes University of Medicine and Pharmacy ; 300041 Timisoara , Romania
| | - Daniel Y Weng
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | - Cenny Taslim
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| | | | - Adana A Llanos
- d Department of Epidemiology ; Rutgers School of Public Health and Rutgers Cancer Institute of New Jersey ; New Brunswick , NJ 08903 , USA
| | - Jo L Freudenheim
- e Department of Epidemiology and Environmental Health; School of Public Health and Health Professions ; University at Buffalo ; Buffalo , NY 14214 , USA
| | - Peter G Shields
- a Comprehensive Cancer Center; The Ohio State University and James Cancer Hospital ; Columbus , Ohio , USA
| |
Collapse
|
6
|
Horne HN, Sherman ME, Pfeiffer RM, Figueroa JD, Khodr ZG, Falk RT, Pollak M, Patel DA, Palakal MM, Linville L, Papathomas D, Geller B, Vacek PM, Weaver DL, Chicoine R, Shepherd J, Mahmoudzadeh AP, Wang J, Fan B, Malkov S, Herschorn S, Hewitt SM, Brinton LA, Gierach GL. Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast: a cross-sectional study of women with benign breast disease. Breast Cancer Res 2016; 18:24. [PMID: 26893016 PMCID: PMC4758090 DOI: 10.1186/s13058-016-0678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Background Terminal duct lobular units (TDLUs) are the primary structures from which breast cancers and their precursors arise. Decreased age-related TDLU involution and elevated mammographic density are both correlated and independently associated with increased breast cancer risk, suggesting that these characteristics of breast parenchyma might be linked to a common factor. Given data suggesting that increased circulating levels of insulin-like growth factors (IGFs) factors are related to reduced TDLU involution and increased mammographic density, we assessed these relationships using validated quantitative methods in a cross-sectional study of women with benign breast disease. Methods Serum IGF-I, IGFBP-3 and IGF-I:IGFBP-3 molar ratios were measured in 228 women, ages 40-64, who underwent diagnostic breast biopsies yielding benign diagnoses at University of Vermont affiliated centers. Biopsies were assessed for three separate measures inversely related to TDLU involution: numbers of TDLUs per unit of tissue area (“TDLU count”), median TDLU diameter (“TDLU span”), and number of acini per TDLU (“acini count”). Regression models, stratified by menopausal status and adjusted for potential confounders, were used to assess the associations of TDLU count, median TDLU span and median acini count per TDLU with tertiles of circulating IGFs. Given that mammographic density is associated with both IGF levels and breast cancer risk, we also stratified these associations by mammographic density. Results Higher IGF-I levels among postmenopausal women and an elevated IGF-I:IGFBP-3 ratio among all women were associated with higher TDLU counts, a marker of decreased lobular involution (P-trend = 0.009 and <0.0001, respectively); these associations were strongest among women with elevated mammographic density (P-interaction <0.01). Circulating IGF levels were not significantly associated with TDLU span or acini count per TDLU. Conclusions These results suggest that elevated IGF levels may define a sub-group of women with high mammographic density and limited TDLU involution, two markers that have been related to increased breast cancer risk. If confirmed in prospective studies with cancer endpoints, these data may suggest that evaluation of IGF signaling and its downstream effects may have value for risk prediction and suggest strategies for breast cancer chemoprevention through inhibition of the IGF system. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0678-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisani N Horne
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA. .,Present Affiliation: Food and Drug Administration, Silver Spring, MD, USA.
| | - Mark E Sherman
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonine D Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, Scotland.
| | - Zeina G Khodr
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Roni T Falk
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | | | - Deesha A Patel
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA. .,Present Affiliation: Northwestern University Medical School, Chicago, IL, USA.
| | - Maya M Palakal
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Laura Linville
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Daphne Papathomas
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | | | | | | | | | - John Shepherd
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Amir Pasha Mahmoudzadeh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Jeff Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. .,Present Affiliation: Hokkaido University, Graduate School of Medicine, Sapporo, Japan.
| | - Bo Fan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Serghei Malkov
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Sally Herschorn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Louise A Brinton
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Gretchen L Gierach
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| |
Collapse
|
7
|
Roy S, Brasky TM, Belury MA, Krishnan S, Cole RM, Marian C, Yee LD, Llanos AA, Freudenheim JL, Shields PG. Associations of erythrocyte ω-3 fatty acids with biomarkers of ω-3 fatty acids and inflammation in breast tissue. Int J Cancer 2015; 137:2934-46. [PMID: 26137879 DOI: 10.1002/ijc.29675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that chronic inflammation is associated with increased breast cancer risk. Long-chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) may reduce circulating biomarkers of inflammation; however associations of blood LCω-3PUFA with breast tissue LCω-3PUFA and breast tissue biomarkers of inflammation are not well understood. We conducted a cross-sectional analysis of breast tissue and blood samples from n = 85 women with no history of breast cancer, who underwent breast reduction surgery. Fatty acids of erythrocytes and undissected breast tissues were analyzed by gas chromatography; C-reactive protein (CRP), interleukin (IL)-6 and IL-8 in plasma and tissue were measured by ELISA. Multivariable-adjusted regression models were used to estimate associations between erythrocyte LCω-3PUFA and breast tissue biomarkers. Women in the highest erythrocyte LCω-3PUFA tertile had LCω-3PUFA concentrations in the breast 73% (95% CI: 31-128%; p trend < 0.0001) higher than women in the lowest tertile. Associations for each individual LCω-3PUFA were similar in magnitude. No significant association was found for the shorter ω-3 PUFA, α-linolenic acid. Although compatible with no association, women in the highest tertile of erythrocyte eicosapentaenoic acid had a nonsignificant 32% (95% CI: -23 to 62%) reduced breast tissue CRP. No correlation was observed between erythrocyte ω-3 PUFA and tissue IL-6 or IL-8 concentrations. Our findings provide evidence that erythrocyte ω-3 fatty acids are valid measures of breast tissue concentrations, and limited evidence that inverse associations from prospective epidemiologic studies of blood LCω-3PUFA and breast cancer risk may be partly explained by reductions in breast tissue inflammation; however, these findings require replication.
Collapse
Affiliation(s)
- Shuvro Roy
- Department of Internal Medicine, Division of Cancer Prevention and Control, The Ohio State University College of Medicine, Columbus, OH
| | - Theodore M Brasky
- Department of Internal Medicine, Division of Cancer Prevention and Control, The Ohio State University College of Medicine, Columbus, OH.,The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Martha A Belury
- The Ohio State University Comprehensive Cancer Center, Columbus, OH.,Department of Human Sciences, The Ohio State University College of Education and Human Ecology, Columbus, OH
| | - Shiva Krishnan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rachel M Cole
- Department of Human Sciences, The Ohio State University College of Education and Human Ecology, Columbus, OH
| | - Catalin Marian
- Department of Internal Medicine, Division of Cancer Prevention and Control, The Ohio State University College of Medicine, Columbus, OH.,The Ohio State University Comprehensive Cancer Center, Columbus, OH.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Lisa D Yee
- The Ohio State University Comprehensive Cancer Center, Columbus, OH.,Department of Surgical Oncology, The Ohio State University College of Medicine, Columbus, OH
| | - Adana A Llanos
- RBHS-School of Public Health and Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, The State University of New York at Buffalo, School of Public Health and Health Professions, Buffalo, NY
| | - Peter G Shields
- Department of Internal Medicine, Division of Cancer Prevention and Control, The Ohio State University College of Medicine, Columbus, OH.,The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
8
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
9
|
Llanos AAM, Brasky TM, Mathew J, Makambi KH, Marian C, Dumitrescu RG, Freudenheim JL, Shields PG. Genetic variation in adipokine genes and associations with adiponectin and leptin concentrations in plasma and breast tissue. Cancer Epidemiol Biomarkers Prev 2014; 23:1559-68. [PMID: 24825736 DOI: 10.1158/1055-9965.epi-14-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Circulating adipokines may be associated with breast cancer risk. Genetic variants governing adipokines and adipokine receptors may also predict risk, but their effect on breast adipokine concentrations is unknown. METHODS We conducted a cross-sectional analysis of functional SNPs in 5 adipokine genes [adiponectin, leptin (LEP), and their receptors] among 85 cancer-free women who were undergoing reduction mammoplasty. RESULTS In multivariable-adjusted regression models, compared with the common GG genotype, the AA genotype of the LEP A19G SNP was associated with 27% lower plasma adiponectin [ratio, 0.73; 95% confidence interval (CI), 0.54-0.98] and leptin (ratio, 0.73; 95% CI, 0.55-0.96). Women with the AG genotype of LEP A19G had 39% lower breast leptin (ratio, 0.61; 95% CI, 0.39-0.97) compared with those with the GG genotype. No associations were observed for SNPs in the remaining genes. CONCLUSIONS Genetic variation in LEP may alter endogenous adipokine concentrations in circulation and in breast tissues. IMPACT These preliminary findings may support the hypothesis that genetic variation in adipokine genes modifies circulating adipokine concentrations and possibly leptin concentrations in local breast tissues, which may be associated with breast cancer risk.
Collapse
Affiliation(s)
- Adana A M Llanos
- The Ohio State University Comprehensive Cancer Center; RBHS-School of Public Health and the Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey;
| | - Theodore M Brasky
- The Ohio State University Comprehensive Cancer Center; Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeena Mathew
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Kepher H Makambi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Catalin Marian
- The Ohio State University Comprehensive Cancer Center; Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio; University of Medicine and Pharmacy Timisoara, Timisoara, Romania; and
| | | | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Peter G Shields
- The Ohio State University Comprehensive Cancer Center; Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Mountzios G, Aivazi D, Kostopoulos I, Kourea HP, Kouvatseas G, Timotheadou E, Zebekakis P, Efstratiou I, Gogas H, Vamvouka C, Chrisafi S, Stofas A, Pentheroudakis G, Koutras A, Galani E, Bafaloukos D, Fountzilas G. Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes. PLoS One 2014; 9:e91407. [PMID: 24637962 PMCID: PMC3956672 DOI: 10.1371/journal.pone.0091407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/11/2014] [Indexed: 12/24/2022] Open
Abstract
Introduction We sought to determine the level of protein expression of the critical components of the insulin-like growth factor receptor (IGFR) pathway and to evaluate their prognostic significance across the different early breast cancer subtypes. Patients and Methods Archival tumor tissue from 1,021 women with early, node positive breast cancer, who were prospectively evaluated within two randomized clinical trials, was used to construct tissue microarrays that were stained for hormone receptors (HR), Ki67, HER2, epidermal growth factor receptor (EGFR) and cytokeratins 5/6, to classify tumors into five immunophenotypical subgroups. Immunohistochemical (IHC) expression of IGF1R-alpha and beta subunits, IGF2R and IGF-binding protein 2 (IGFBP2) was assessed using the immunoreactive score (IRS). Repeated internal cross-validation was performed to examine the statistical validity of the cut off points for all biomarkers. Results After a median follow-up time of 105.4 months, overall 370 women (36.2%) had relapsed and 270 (26.4%) had died. Tumors expressing IGF1R-alpha above the median IRS were significantly more frequently HR positive (luminal A+B+HER2), as compared to HER2-enriched and triple negative ones (p<0.001 for both comparisons). IGF2R was overexpressed significantly more frequently in HR negative tumors (p = 0.001) and had an inverse correlation with all other biomarkers. Patients with luminal A and B tumors with high IGF1R-alpha and negative EGFR expression (N = 190) had significantly higher 4-year survival rates, as compared to the rest (log-rank p = 0.046), as did patients with luminal A and B tumors with high IGF1R-alpha and low IGF2R expression, as compared to the rest (N = 91), (log-rank p = 0.035). After adjustment for significant variables, patients in the latter group had a relative 45% reduction in the risk of death, as compared to the rest (p = 0.035). Conclusion Aberrant expression of components of the IGF1R pathway is associated with better clinical outcomes in women with luminal A and B, node positive, early breast cancer.
Collapse
Affiliation(s)
- Giannis Mountzios
- Department of Medical Oncology, 251 Airforce General Hospital, Athens, Greece
- * E-mail:
| | - Dimitra Aivazi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Helen P. Kourea
- Department of Pathology, University Hospital of Patras, Rion, Greece
| | | | - Eleni Timotheadou
- Department of Medical Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Pantelis Zebekakis
- 1 Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | | - Helen Gogas
- First Department of Medicine, “Laiko” General Hospital, University of Athens, Medical School, Athens, Greece
| | | | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Anastasios Stofas
- Pathology Department National & Kapodistrian University of Athens, Athens, Greece
| | | | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | - Eleni Galani
- Second Department of Medical Oncology, “Metropolitan” Hospital, Piraeus, Greece
| | | | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|