1
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Takagi K, Yamaguchi M, Miyashita M, Sasano H, Suzuki T. Diverse role of androgen action in human breast cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R102-R111. [PMID: 37435447 PMCID: PMC10259322 DOI: 10.1530/eo-22-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 07/13/2023]
Abstract
Breast cancer is a hormone-dependent cancer, and sex steroids play a pivotal role in breast cancer progression. Estrogens are strongly associated with breast cancers, and the estrogen receptor (estrogen receptor α; ERα) is expressed in 70-80% of human breast carcinoma tissues. Although antiestrogen therapies (endocrine therapies) have significantly improved clinical outcomes in ERα-positive breast cancer patients, some patients experience recurrence after treatment. In addition, patients with breast carcinoma lacking ERα expression do not benefit from endocrine therapy. The androgen receptor (AR) is also expressed in >70% of breast carcinoma tissues. Growing evidence supports this novel therapeutic target for the treatment of triple-negative breast cancers that lack ERα, progesterone receptor, and human EGF receptor 2, and ERα-positive breast cancers, which are resistant to conventional endocrine therapy. However, the clinical significance of AR expression is still controversial and the biological function of androgens in breast cancers is unclear. In this review, we focus on the recent findings concerning androgen action in breast cancers and the contributions of androgens to improved breast cancer therapy.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mio Yamaguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Lee SR, Yang H, Jo SL, Lee YH, Lee HW, Park BK, Hong EJ. Suppressed estrogen supply via extra-ovarian progesterone receptor membrane component 1 in menopause. J Biomed Res 2021; 35:228-237. [PMID: 33911053 PMCID: PMC8193715 DOI: 10.7555/jbr.35.20200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In post-menopausal women, intra-mammary estrogen, which is converted from extra-ovarian estrone (E1), promotes the growth of breast cancer. Since the aromatase inhibitor letrozole does not suppress 17β-estradiol (E2) production from E1, high intra-mammary E1 concentrations impair letrozole's therapeutic efficacy. Progesterone receptor membrane component 1 (Pgrmc1) is a non-classical progesterone receptor associated with breast cancer progression. In the present study, we introduced a Pgrmc1 heterozygous knockout (hetero KO) murine model exhibiting low Pgrmc1 expression, and observed estrogen levels and steroidogenic gene expression. Naïve Pgrmc1 hetero KO mice exhibited low estrogen (E2 and E1) levels and low progesterone receptor (PR) expression, compared to wild-type mice. In contrast, Pgrmc1 hetero KO mice that have been ovariectomized (OVX), including letrozole-treated OVX mice (OVX-letrozole), exhibited high estrogen levels and PR expression. Increased extra-ovarian estrogen production in Pgrmc1 hetero KO mice was observed with the induction of steroid sulfatase (STS). In MCF-7 cell, letrozole suppressed PR expression, but PGRMC1 knockdown increased PR and STS expression. Our presented results highlight the important role of Pgrmc1 in modulating estrogen production when ovary-derived estrogen is limited, thereby suggesting a potential therapeutic approach for letrozole resistance.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Domińska K, Kowalska K, Urbanek KA, Habrowska-Górczyńska DE, Ochędalski T, Piastowska Ciesielska AW. The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes. Int J Mol Sci 2020; 21:ijms21176227. [PMID: 32872192 PMCID: PMC7504072 DOI: 10.3390/ijms21176227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene. Ang-(3-7) increased the number of PC3 cells in the S phase and improved anchorage-independent growth as well as mobility. In this case, a significant increase in MKI67, BIRC5, and CDH-1 gene expression was also observed as well as all members of the NF-kB family. Furthermore, we speculate that this peptide can repress the proliferation of LNCaP cells by NOS3-mediated G2/M cell cycle arrest. No changes in expression of BIRC5 and BCL2/BAX ratio were observed but a decrease mRNA proapoptotic BAD gene was seen. In the both lines, Ang-(3-7) improved ROCK1 gene expression however, increased VEGF and NOS3 mRNA was only seen in the PC3 or LNCaP cells, respectively. Interestingly, it appears that Ang-(1-9) and Ang-(3-7) can modulate the level of steroidogenic enzymes responsible for converting cholesterol to testosterone in both prostate cancer lines. Furthermore, in PC3 cells, Ang-(1-9) upregulated AR expression while Ang-(3-7) upregulated the expression of both estrogen receptor genes. Ang-(1-9) and Ang-(3-7) can impact on biological properties of prostate cancer cells by modulating inflammatory and steroidogenesis pathway genes, among others.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
- Correspondence:
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Dominika Ewa Habrowska-Górczyńska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Agnieszka Wanda Piastowska Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.K.); (K.A.U.); (D.E.H.-G.); (A.W.P.C.)
| |
Collapse
|
5
|
Bahrami N, Chang G, Kanaya N, Sauer T, Park D, Loeng M, Gravdehaug B, Chen S, Geisler J. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol 2020; 200:105641. [PMID: 32151708 DOI: 10.1016/j.jsbmb.2020.105641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/29/2022]
Abstract
The aromatase inhibitors (AIs), letrozole (Femar®/Femara®) and exemestane (Aromasin®), are widely used to treat estrogen receptor (ER) positive breast cancer in postmenopausal patients. In the setting of metastatic breast cancer, these drugs may be used after another causing new responses in selected patients after progressing on the first choice. The precise explanation for this "lack of cross resistance" is still missing. NEOLETEXE is a neoadjuvant, randomized, open-label, cross-over trial. Postmenopausal patients with ER-positive, HER-2 negative, locally advanced breast cancer were enrolled. All patients were randomized to treatment starting with either letrozole or exemestane for at least 2 months followed by another 2 months on the alternative AI. The total estrogenic activities in blood samples were determined using the AroER tri-screen assay developed in the Chen laboratory. Using this highly sensitive assay, estrogenic activity was detected at three time points for all patients. Importantly, a significantly higher total estrogenic activity was found during therapy with exemestane compared to letrozole in 21 out of 26 patients. When letrozole was included in the AroER tri-screen assay, the estrogenic activities in most samples collected during exemestane treatment were further reduced, suggesting that low levels of androgens remained in specimens obtained after exemestane treatment. Our results suggest the AroER tri-screen to be a very sensitive method to estimate the overall estrogen-mediated activity in human samples even during therapy with highly potent aromatase inhibitors. In the present study, serum estrogen activity was significantly higher during exemestane therapy when compared to letrozole therapy.
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway
| | - Daehoon Park
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway.
| |
Collapse
|
6
|
Li T, Zhang W, Lin SX. Steroid enzyme and receptor expression and regulations in breast tumor samples - A statistical evaluation of public data. J Steroid Biochem Mol Biol 2020; 196:105494. [PMID: 31610224 DOI: 10.1016/j.jsbmb.2019.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively. The results showed significant up-regulation of 17β-HSD7 (2.50-fold, p < 0.0001) in BC, supporting its effect in sex-hormone control. Besides, suppression of 11β-HSD1 expression (-8.29-fold, p < 0.0001) and elevation of 11β-HSD2 expression (2.04-fold, p < 0.0001) provide a low glucocorticoid environment diminishing BC anti-proliferation. Furthermore, 3α-HSDs were down-regulated (-1.59-fold, p < 0.01; -8.18-fold, p < 0.0001; -33.96-fold, p < 0.0001; -31.85-fold, p < 0.0001 for type 1-4, respectively), while 5α-reductases were up-regulated (1.41-fold, p < 0.0001; 2.85-fold, p < 0.0001; 1.70-fold, p < 0.0001 for type 1-3, respectively) in BC, reducing cell proliferation suppressers 4-pregnenes, increasing cell proliferation stimulators 5α-pregnanes. Expression analysis indicates significant correlations between 11β-HSD1 with 3α-HSD4 (r = 0.605, p < 0.0001) and 3α-HSD3 (r = 0.537, p < 0.0001). Significant expression correlations between 3α-HSDs were also observed. Our results systematically present the regulation of steroid-converting enzymes and their roles in modulating the intratumoral steroid-hormone levels in BC with a vivid 3D-schema, supporting novel therapy targeting the reductive 17β-HSD7 and proposing a new combined therapy targeting 11β-HSD2 and 17β-HSD7.
Collapse
MESH Headings
- 17-Hydroxysteroid Dehydrogenases/genetics
- 17-Hydroxysteroid Dehydrogenases/metabolism
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cohort Studies
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Factual/statistics & numerical data
- Estradiol/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadal Steroid Hormones/genetics
- Gonadal Steroid Hormones/metabolism
- Humans
- Public Sector/statistics & numerical data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Wenfa Zhang
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU Research Center and Department of Molecular Medicine, Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
7
|
Anupa G, Sharma JB, Roy KK, Sengupta J, Ghosh D. An assessment of the multifactorial profile of steroid-metabolizing enzymes and steroid receptors in the eutopic endometrium during moderate to severe ovarian endometriosis. Reprod Biol Endocrinol 2019; 17:111. [PMID: 31878927 PMCID: PMC6933937 DOI: 10.1186/s12958-019-0553-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies of expression profiles of major endometrial effectors of steroid physiology in endometriosis have yielded markedly conflicting conclusions, presumably because the relative effects of type of endometriosis, fertility history and menstrual cycle phases on the measured variables were not considered. In the present study, endometrial mRNA and protein levels of several effectors of steroid biosynthesis and action in patients with stage III-IV ovarian endometriosis (OE) with known fertility and menstrual cycle histories were compared with the levels in control endometrium to test this concept. METHODS Endometrial samples were collected from patients without endometriosis (n = 32) or OE stages III-IV (n = 52) with known fertility and cycle histories. qRT-PCR and immunoblotting experiments were performed to measure levels of NR5A1, STAR, CYP19A1, HSD17Bs, ESRs and PGR transcripts and proteins, respectively. Tissue concentrations of steroids (P4, T, E1 and E2) were measured using ELISAs. RESULTS The levels of expression of aromatase and ERβ were lower (P < 0.0001) and 17β-HSD1 (P < 0.0001) and PRA (P < 0.01) were higher in OE endometrium. Lower aromatase levels and higher 17β-HSD1 levels were detected in fertile (aromatase: P < 0.05; 17β-HSD1: P < 0.0001) and infertile (aromatase: P < 0.0001; 17β-HSD1: P < 0.0001) OE endometrium than in the matched control tissues. Both proliferative (PP) and secretory (SP) phase OE samples expressed aromatase (P < 0.0001) and ERβ (PP: P < 0.001; SP: P < 0.01) at lower levels and 17β-HSD1 (P < 0.0001) and PRA (PP: P < 0.01; SP: P < 0.0001) at higher levels than matched controls. Higher 17β-HSD1 (P < 0.01) and E2 (P < 0.05) levels and a lower (P < 0.01) PRB/PRA ratio was observed in infertile secretory phase OE endometrium than in control. CONCLUSIONS We report that dysregulated expression of 17β-HSD1 and PGR resulting in hyperestrogenism and progesterone resistance during the secretory phase of the menstrual cycle, rather than an anomaly in aromatase expression, was the hallmark of eutopic endometrium from infertile OE patients. Furthermore, the results provide proof of concept that the fertility and menstrual cycle histories exerted relatively different effects on steroid physiology in the endometrium from OE patients compared with the control subjects.
Collapse
Affiliation(s)
- G. Anupa
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Kallol K. Roy
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayasree Sengupta
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Debabrata Ghosh
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
9
|
Li T, Stephen P, Zhu DW, Shi R, Lin SX. Crystal structures of human 17β-hydroxysteroid dehydrogenase type 1 complexed with estrone and NADP + reveal the mechanism of substrate inhibition. FEBS J 2019; 286:2155-2166. [PMID: 30768851 DOI: 10.1111/febs.14784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in estrogen activation and is thus involved in estrogen-dependent diseases (EDDs). Unlike other 17β-HSD members, 17β-HSD1 undergoes a significant substrate-induced inhibition that we have previously reported. Here we solved the binary and ternary crystal structures of 17β-HSD1 in complex with estrone (E1) and cofactor analog NADP+ , demonstrating critical enzyme-substrate-cofactor interactions. These complexes revealed a reversely bound E1 in 17β-HSD1 that provides the basis of the substrate inhibition, never demonstrated in estradiol complexes. Structural analysis showed that His221 is the key residue responsible for the reorganization and stabilization of the reversely bound E1, leading to the formation of a dead-end complex, which exists widely in NADP(H)-preferred enzymes for the regulation of their enzymatic activity. Further, a new inhibitor is proposed that may inhibit 17β-HSD1 through the formation of a dead-end complex. This finding indicates a simple mechanism of enzyme regulation in the physiological background and introduces a pioneer inhibitor of 17β-HSD1 based on the dead-end inhibition model for efficiently targeting EDDs. DATABASES: Coordinates and structure factors of 17β-HSD1-E1 and 17β-HSD1-E1-NADP+ have been deposited in the Protein Data Bank with accession code 6MNC and 6MNE respectively. ENZYMES: 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) EC 1.1.1.62.
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dao-Wei Zhu
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| |
Collapse
|
10
|
Li T, Maltais R, Poirier D, Lin SX. Combined Biophysical Chemistry Reveals a New Covalent Inhibitor with a Low-Reactivity Alkyl Halide. J Phys Chem Lett 2018; 9:5275-5280. [PMID: 30148957 DOI: 10.1021/acs.jpclett.8b02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays a pivotal role in the progression of estrogen-related diseases because of its involvement in the biosynthesis of estradiol (E2), constituting a valuable therapeutic target for endocrine treatment. In the present study, we successfully cocrystallized the enzyme with the reversible inhibitor 2-methoxy-16β-( m-carbamoylbenzyl)-E2 (2-MeO-CC-156) as well as the enzyme with the irreversible inhibitor 3-(2-bromoethyl)-16β-( m-carbamoylbenzyl)-17β-hydroxy-1,3,5(10)-estratriene (PBRM). The structures of ternary complexes of 17β-HSD1-2-MeO-CC-156-NADP+ and 17β-HSD1-PBRM-NADP+ comparatively show the formation of a covalent bond between His221 and the bromoethyl side chain of the inhibitor in the PBRM structure. A dynamic process including beneficial molecular interactions that favor the specific binding of a low-reactivity inhibitor and subsequent N-alkylation event through the participation of His221 in the enzyme catalytic site clearly demonstrates the covalent bond formation. This finding opens the door to a new design of alkyl halide-based specific covalent inhibitors as potential therapeutic agents for different enzymes, contributing to the development of highly efficient inhibitors.
Collapse
Affiliation(s)
- Tang Li
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - René Maltais
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
| | - Donald Poirier
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Sheng-Xiang Lin
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| |
Collapse
|
11
|
Africander D, Storbeck KH. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol Cell Endocrinol 2018; 466:86-97. [PMID: 28527781 DOI: 10.1016/j.mce.2017.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
It is well-known that breast cancer is hormone-dependent and that steroid hormones exert their mitogenic effects by binding to estrogen, progesterone and androgen receptors. Vital to our understanding and treatment of this malignancy, is the local metabolism of steroid hormones in breast cancer tissue. This review summarises our current knowledge on steroid producing pathways in the adrenal, ovary and breast, while focussing on the availability of specific circulating hormone precursors and steroidogenic enzymes involved in the local synthesis and metabolism of steroid hormones in the breast. Consequently, we highlight alternate pathways that may be instrumental in the etiology of breast cancer.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
12
|
Niinivehmas S, Postila PA, Rauhamäki S, Manivannan E, Kortet S, Ahinko M, Huuskonen P, Nyberg N, Koskimies P, Lätti S, Multamäki E, Juvonen RO, Raunio H, Pasanen M, Huuskonen J, Pentikäinen OT. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J Enzyme Inhib Med Chem 2018; 33:743-754. [PMID: 29620427 PMCID: PMC6010071 DOI: 10.1080/14756366.2018.1452919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-β-hydroxysteroid dehydrogenase 2 – a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.
Collapse
Affiliation(s)
- Sanna Niinivehmas
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pekka A Postila
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Sanna Rauhamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elangovan Manivannan
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,b School of Pharmacy , Devi Ahilya University , Indore , India
| | - Sami Kortet
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Mira Ahinko
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pasi Huuskonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Niina Nyberg
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | | | - Sakari Lätti
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elina Multamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Risto O Juvonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Hannu Raunio
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Markku Pasanen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Juhani Huuskonen
- c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Olli T Pentikäinen
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,f Institute of Biomedicine, University of Turku , Turku , Finland
| |
Collapse
|
13
|
Rauhamäki S, Postila PA, Niinivehmas S, Kortet S, Schildt E, Pasanen M, Manivannan E, Ahinko M, Koskimies P, Nyberg N, Huuskonen P, Multamäki E, Pasanen M, Juvonen RO, Raunio H, Huuskonen J, Pentikäinen OT. Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors. Front Chem 2018; 6:41. [PMID: 29552556 PMCID: PMC5840146 DOI: 10.3389/fchem.2018.00041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM−1 μM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.
Collapse
Affiliation(s)
- Sanna Rauhamäki
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka A Postila
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Niinivehmas
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Kortet
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Emmi Schildt
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mira Pasanen
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elangovan Manivannan
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,School of Pharmacy, Devi Ahilya University, Madhya Pradesh, India
| | - Mira Ahinko
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Niina Nyberg
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Pasi Huuskonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elina Multamäki
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Juhani Huuskonen
- Department of Chemistry & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Olli T Pentikäinen
- Computational Bioscience Laboratory, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,MedChem.fi, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Chang YC, Chen CK, Chen MJ, Lin JC, Lin CH, Huang WC, Cheng SP, Chen SN, Liu CL. Expression of 3β-Hydroxysteroid Dehydrogenase Type 1 in Breast Cancer is Associated with Poor Prognosis Independent of Estrogen Receptor Status. Ann Surg Oncol 2017; 24:4033-4041. [DOI: 10.1245/s10434-017-6000-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 01/11/2023]
|
15
|
Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications. Breast Cancer 2017; 25:379-391. [PMID: 28389808 DOI: 10.1007/s12282-017-0772-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Estrogen plays crucial roles in the progression of hormone-dependent breast cancers through activation of nuclear estrogen receptor α (ER). Estrogen is produced locally from circulating inactive steroids and adrenal androgens in postmenopausal women. However, conversion by aromatase is a rate-limiting step in intratumoral estrogen production in breast cancer. Aromatase inhibitors (AIs) inhibit the growth of hormone-dependent breast cancers by blocking the conversion of adrenal androgens to estrogen and by unmasking the inhibitory effect of androgens, acting via the androgen receptor (AR). AIs are thus a standard treatment option for postmenopausal hormone-dependent breast cancer. However, although initial use of AIs provides substantial clinical benefit, some breast cancer patients relapse because of the acquisition of AI resistance. A better understanding of the mechanisms of AI resistance may contribute to the development of new therapeutic strategies and aid in the search for new therapeutic targets and agents. We have investigated AI-resistance mechanisms and established six AI-resistant cell lines. Some of them exhibit estrogen depletion-resistance properties via constitutive ER-activation or ER-independent growth signaling. We examined how breast cancer cells can adapt to estrogen depletion and androgen superabundance. Estrogen and estrogenic androgen produced independently from aromatase contributed to cell proliferation in some of these cell lines, while another showed AR-dependent cell proliferation. Based on these findings, currently proposed AI-resistance mechanisms include an aromatase-independent estrogen-producing pathway, estrogen-independent ER function, and ER-independent growth signaling. This review summarizes several hypotheses of AI-resistance mechanisms and discusses how existing or novel therapeutic agents may be applied to treat AI-resistant breast cancers.
Collapse
|
16
|
Mungenast F, Aust S, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Castillo-Tong DC, Zeillinger R, Thalhammer T. Clinical significance of the estrogen-modifying enzymes steroid sulfatase and estrogen sulfotransferase in epithelial ovarian cancer. Oncol Lett 2017; 13:4047-4054. [PMID: 28588698 PMCID: PMC5452883 DOI: 10.3892/ol.2017.5969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 12/04/2022] Open
Abstract
17β-estradiol (E2) can contribute to the progression of epithelial ovarian cancer (EOC). Although the majority of patients with EOC are postmenopausal woman, when de novo estrogen production in the ovary has ceased, ovarian cancer cells remain exposed to estrogens synthesized locally in the cancer cells from inactive sulfonated steroid hormone precursors-such as estrone sulfate taken up from the circulation via the sulfatase pathway. An abundance of the estrogen-modifying enzymes, including estrogen-activating steroid sulfatase (STS) and estrogen-inactivating estrogen-sulfotransferase (SULT1E1), is important for providing active estrogen to EOC cells. Therefore, the present study determined the levels of SULT1E1, STS and estrogen receptor α (ERα) protein in paraffin-embedded specimens from 206 patients with Federation of Gynecology and Obstetrics stage II–IV EOC treated with debulking surgery and standard platinum-based adjuvant chemotherapy. The levels of STS, SULT1E1 and ERα were assessed by automated quantitative microscopy-based image analysis subsequent to immunohistochemical staining. Significantly higher SULT1E1 levels were observed in better differentiated EOC tumors compared to grade 3 EOC tumors (P=0.001). STS and SULT1E1 levels were positively associated with ERα abundance (P<0.001 and P=0.001, respectively). In advanced stage high-grade serous EOC (HGSOC; n=132), the most frequent and lethal type of ovarian cancer, SULT1E1 expression was significantly associated with a better overall survival rate (hazard ratio 0.66, 95% confidence interval, 0.45–0.94; P=0.005). These results highlight the importance of SULT1E1-mediated estrogen inactivation in EOC, particularly HGSOC. Therefore, targeting the sulfatase pathway is a potential endocrine therapeutic intervention for certain patients with estrogen-responsive EOC.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefanie Aust
- Department of Gynaecology and Gynaecological Oncology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Catholic University of Leuven, University Hospital, B-3000 Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Elena Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Virchow Clinic Campus, Medical University of Berlin, D-13353 Berlin, Germany
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, University of Munich, D-80539 Munich, Germany
| | - Dan Cacsire Castillo-Tong
- Translational Gynaecology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
17
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. mRNA expression of steroidogenic enzymes, steroid hormone receptors and their coregulators in gastric cancer. Oncol Lett 2017; 13:3369-3378. [PMID: 28521442 PMCID: PMC5431337 DOI: 10.3892/ol.2017.5881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Epidemiological and experimental findings suggest that the development of gastric cancer (GC) is regulated by steroid hormones. In postmenopausal women and older men, the majority of steroid hormones are produced locally in peripheral tissue through the enzymatic conversion of steroid precursors. Therefore, using reverse transcription-quantitative polymerase chain reaction analysis, the mRNA expression of genes encoding steroidogenic enzymes, including steroid sulfatase (STS), hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1), 17β-hydroxysteroid dehydrogenase type 7 and aromatase (CYP19A1), was investigated in primary tumoral and adjacent healthy gastric mucosa from 60 patients with GC. Furthermore, the mRNA levels for estrogen receptor α, estrogen receptor β (ESR2) and androgen receptor (AR), along with their coregulators, including proline, glutamate and leucine rich protein 1, CREB binding protein, nuclear receptor coactivator 1 (NCOA1), nuclear receptor corepressor 1 (NCOR1) and nuclear receptor subfamily 2 group F member 1 (NR2F1), were investigated. Additionally, the association between the mRNA expression of these genes and the clinicopathological features of patients with GC was examined. Significantly decreased levels of STS, HSD3B1, ESR2, AR, NCOA1 and NCOR1 mRNA, in addition to significantly increased levels of CYP19A1 mRNA were demonstrated in tumoral tissue samples compared with adjacent healthy gastric tissue samples. Deregulated expression of these genes in the analyzed tissue samples was associated with certain clinicopathological features of GC, such as age and localization of the tumor. The results of the current study suggest that all of the genes analyzed are expressed in tumoral and adjacent healthy gastric mucosa. In addition, the results indicate that abnormal expression of STS, ESR2, AR, NCOA1 and NCOR1 may serve a role in the development and progression of GC, and may be associated with specific clinicopathological features in patients with GC.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 60-781 Poznań, Poland
| | - Dawid Murawa
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland.,Research and Development Centre, Regional Specialist Hospital of Wrocław, 51-124 Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Mateusz Wichtowski
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Arkadiusz Spychała
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Ryszard Marciniak
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Murawa
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Michał Drews
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 60-781 Poznań, Poland
| |
Collapse
|
18
|
Tsuboi K, Kaneko Y, Nagatomo T, Fujii R, Hanamura T, Gohno T, Yamaguchi Y, Niwa T, Hayashi SI. Different epigenetic mechanisms of ERα implicated in the fate of fulvestrant-resistant breast cancer. J Steroid Biochem Mol Biol 2017; 167:115-125. [PMID: 27888136 DOI: 10.1016/j.jsbmb.2016.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
Abstract
Approximately 70% of breast cancers express estrogen receptor α (ERα), which plays critical roles in breast cancer development. Fulvestrant has been effectively used to treat ERα-positive breast cancer, although resistance remains a critical problem. To elucidate the mechanism of resistance to fulvestrant, we established fulvestrant-resistant cell-lines named MFR (MCF-7 derived fulvestrant resistance) and TFR (T-47D derived fulvestrant resistance) from the ERα-positive luminal breast cancer cell lines MCF-7 and T-47D, respectively. Both fulvestrant-resistant cell lines lost sensitivity to estrogen and anti-estrogens. We observed diminished ERα expression at both the protein and mRNA levels. To address the mechanism of gene expression regulation, we examined epigenetic alteration, especially the DNA methylation level of ERα gene promoters. MFR cells displayed high methylation levels upstream of the ERα gene, whereas no change in DNA methylation was observed in TFR cells. Hence, we examined the gene expression plasticity of ERα, as there are differences in its reversibility following fulvestrant withdrawal. ERα gene expression was not restored in MFR cells, and alternative intracellular phosphorylation signals were activated. By contrast, TFR cells exhibited plasticity of ERα gene expression and ERα-dependent growth; moreover, these cells were resensitized to estrogen and anti-estrogens. The difference in epigenetic regulation among individual cells might explain the difference in the plasticity of ERα expression. We also identified an MFR cell-activating HER/Src-Akt/MAPK pathway; thus, the specific inhibitors effectively blocked MFR cell growth. This finding implies the presence of multiple fulvestrant resistance mechanisms and suggests that the optimal therapies differ among individual tumors as a result of differing epigenetic mechanisms regulating ERα gene expression.
Collapse
Affiliation(s)
- Kouki Tsuboi
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Yosuke Kaneko
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Takamasa Nagatomo
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Rika Fujii
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan; Surgical Oncology, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Toru Hanamura
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan; Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Nagano, Japan
| | - Tatsuyuki Gohno
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate Tohoku University School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Graduate Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
19
|
Associations of obesity and physical activity with serum and intratumoral sex steroid hormone levels among postmenopausal women with breast cancer: analysis of paired serum and tumor tissue samples. Breast Cancer Res Treat 2017; 162:115-125. [PMID: 28044214 DOI: 10.1007/s10549-016-4094-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE It has been hypothesized that intratumoral estrogens may play important roles in the growth of breast cancer. However, few studies have investigated such intratumoral hormones, or their association with risk factors of breast cancer. METHODS In this cross-sectional study, hormone levels in paired serum and tumor tissue samples from 146 postmenopausal women with breast cancer were measured by liquid chromatography-tandem mass spectrometry and compared between estrogen/progesterone (ER/PgR) subtypes. The associations of risk factors including body mass index (BMI) and other lifestyle factors with these hormone levels were investigated using analysis of covariance. RESULTS The level of estradiol (E2) in tumor tissue was extremely high in women with ER+ (geometric mean 95.6 pg/g) relative to women with ER-/PgR- (8.9 pg/g), whereas serum E2 level did not differ much between the two groups (3.1 and 2.8 pg/ml, respectively). Serum levels of precursors for E2, including testosterone (T) and androstenedione (Adione), and tissue Adione level, were high among women with ER+. After adjustment for confounding variables, BMI was found to be positively associated with tissue levels of E2, estrone (E1), T, and Adione among women with ER+ (P trend < 0.0001 for E2; 0.0016 for E1; 0.0002 for T; and 0.03 for Adione). CONCLUSION The data suggest that tissue E2 is related to the growth of receptor-positive breast cancer and that risk factors such as BMI affect tissue levels of E2 and its precursors. Understanding of hormonal environments within tumor tissue may be important for elucidating hormonal etiology of breast cancer and improving the prognosis of patients.
Collapse
|
20
|
Hanamura T, Ito T, Kanai T, Maeno K, Shimojo Y, Uehara T, Suzuki T, Hayashi S, Ito K. Human 3β-hydroxysteroid dehydrogenase type 1 in human breast cancer: clinical significance and prognostic associations. Cancer Med 2016; 5:1405-15. [PMID: 27139182 PMCID: PMC4864168 DOI: 10.1002/cam4.708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
Active sex steroids including estrogens and androgens are locally produced from circulating inactive steroids by various steroid-metabolizing enzymes, and play pivotal roles in the progression of hormone-dependent breast cancers. Human 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD type 1) is a critical enzyme in the formation of all classes of active steroid hormones, and is also involved in the inactivation of potent androgen dihydrotestosterone (DHT). Therefore, this enzyme is suggested to modulate active sex steroid production or inactivation, with a role in hormone-dependent breast cancer. The purpose of this study was to investigate the clinical significance of 3β-HSD type 1 in human breast cancer. Using immunohistochemistry (IHC), we evaluated 3β-HSD type 1 expression in 161 human breast cancers and analyzed correlations of 3β-HSD type 1 expression with various clinicopathological factors. Of 161 breast cancer cases, 3β-HSD type 1 expression in cancer cells was detected in 119 cases (73.9%), and was positively correlated with estrogen receptor (ER)-positivity but not HER-2 status. In ER-positive cases (n = 130), 3β-HSD type 1 expression was inversely correlated with invasive tumor size (P = 0.0009), presence of invasive region (P = 0.0107), and lymphatic involvement (P = 0.0004). 3β-HSD type 1 expression was significantly associated with decreased risk of recurrence or improved prognosis by both univariate (P = 0.0003 and P = 0.009, respectively) and multivariate (P = 0.027 and P = 0.023, respectively) analyses. Our findings indicate that this enzyme is a prognostic factor in hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Toru Hanamura
- Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of Medicine3‐1‐1 AsahiMatsumotoNaganoJapan
| | - Tokiko Ito
- Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of Medicine3‐1‐1 AsahiMatsumotoNaganoJapan
| | - Toshiharu Kanai
- Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of Medicine3‐1‐1 AsahiMatsumotoNaganoJapan
| | - Kazuma Maeno
- Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of Medicine3‐1‐1 AsahiMatsumotoNaganoJapan
| | - Yasuyo Shimojo
- Department of Laboratory MedicineShinshu University HospitalMatsumotoNaganoJapan
| | - Takeshi Uehara
- Department of Laboratory MedicineShinshu University HospitalMatsumotoNaganoJapan
| | - Takashi Suzuki
- Department of Pathology and HistotechnologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Shin‐ichi Hayashi
- Center for Regulatory Epigenome and Diseases, Department of Molecular and Functional DynamicsTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Ken‐ichi Ito
- Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of Medicine3‐1‐1 AsahiMatsumotoNaganoJapan
| |
Collapse
|
21
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Hayashi SI, Kimura M. Mechanisms of hormonal therapy resistance in breast cancer. Int J Clin Oncol 2015; 20:262-7. [PMID: 25652907 DOI: 10.1007/s10147-015-0788-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023]
Abstract
Whilst estrogen receptor (ER)-positive breast cancers are preferentially treated with hormone therapy, approximately one-third of them relapse. The mechanisms of refractoriness have been investigated by numerous studies but have not been fully clarified. Hormonal therapy resistance, particularly aromatase inhibitor (AI) resistance, may be related to the acquisition of alternative intracellular ER signaling. We have been investing the mechanisms using cancer specimens and cell lines by monitoring the transcription activity of ERs. AI refractory specimens showed diverse ER activity in the adenovirus estrogen receptor element-green fluorescent protein (ERE-GFP) assay and varied sensitivity to anti-estrogens, indicating the existence of multiple resistant mechanisms. We established six different types of cell lines mimicking AI resistance from ERE-GFP-introduced ER-positive cell lines. They revealed that multiple and alternative ER activating pathways were involved in the resistance, such as phosphorylation-dependent or androgen metabolite-dependent mechanisms. The response to fulvestrant and mammalian target of rapamycin inhibitor also varied among individual resistant cell lines. These results indicate that further subclassification of ER-positive breast cancer is extremely important to decide the therapeutic management of not only hormonal therapy but also new molecular target therapy.
Collapse
Affiliation(s)
- Shin-ichi Hayashi
- Department of Molecular and Functional Dynamics, and Center for Regulatory Epigenomics and Diseases, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan,
| | | |
Collapse
|
23
|
McNamara KM, Sasano H. The intracrinology of breast cancer. J Steroid Biochem Mol Biol 2015; 145:172-8. [PMID: 24751707 DOI: 10.1016/j.jsbmb.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 02/01/2023]
Abstract
The importance of intracrinology, or in situ production of steroids from circulating precursors, in breast cancer has been firmly established in estrogen actions on postmenopausal patients. Expression levels of various steroid synthesizing and/or metabolizing enzymes have been examined in human breast cancer tissues by a number of groups. The enzymes examined include those capable of converting circulating DHEA-S to sex steroids (STS and 3βHSDΔ4-5 isomerase), the group of enzymes that modulate the strength of both androgens and estrogens (17βHSD family) as well as the androgenic 5αR enzymes and the estrogenic aromatase enzyme. In addition to these DHEA-related metabolism pathways, other intracrine pathways involving progesterone and cholesterol have also been examined. Some risk factors of breast cancer development, including obesity, have also been postulated to interact with steroid metabolising pathways. In this review, we aimed to summarise the current state of knowledge regarding intracrine metabolism including expression levels of various enzymes and receptors, focusing particularly upon the importance of the production of biologically potent steroids from circulating sulfated precursors such as DHEA-S. In addition, we attempted to summarise the factors, both steroidal and non-steroidal, involved in the regulation of these enzymes and propose future directions for research in this particular field. The concept of intracrinology was first proposed over 20 years ago but there still remain many unanswered questions which could open new horizons for the understanding of intracrine metabolism in the breast. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Keely May McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Hapangama D, Kamal A, Bulmer J. Estrogen receptor β: the guardian of the endometrium. Hum Reprod Update 2014; 21:174-93. [DOI: 10.1093/humupd/dmu053] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|