1
|
Adams A, Jakob T, Huth A, Monsef I, Ernst M, Kopp M, Caro-Valenzuela J, Wöckel A, Skoetz N. Bone-modifying agents for reducing bone loss in women with early and locally advanced breast cancer: a network meta-analysis. Cochrane Database Syst Rev 2024; 7:CD013451. [PMID: 38979716 PMCID: PMC11232105 DOI: 10.1002/14651858.cd013451.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
BACKGROUND Bisphosphonates and receptor activator of nuclear factor-kappa B ligand (RANKL)-inhibitors are amongst the bone-modifying agents used as supportive treatment in women with breast cancer who do not have bone metastases. These agents aim to reduce bone loss and the risk of fractures. Bisphosphonates have demonstrated survival benefits, particularly in postmenopausal women. OBJECTIVES To assess and compare the effects of different bone-modifying agents as supportive treatment to reduce bone mineral density loss and osteoporotic fractures in women with breast cancer without bone metastases and generate a ranking of treatment options using network meta-analyses (NMAs). SEARCH METHODS We identified studies by electronically searching CENTRAL, MEDLINE and Embase until January 2023. We searched various trial registries and screened abstracts of conference proceedings and reference lists of identified trials. SELECTION CRITERIA We included randomised controlled trials comparing different bisphosphonates and RANKL-inihibitors with each other or against no further treatment or placebo for women with breast cancer without bone metastases. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias of included studies and certainty of evidence using GRADE. Outcomes were bone mineral density, quality of life, overall fractures, overall survival and adverse events. We conducted NMAs and generated treatment rankings. MAIN RESULTS Forty-seven trials (35,163 participants) fulfilled our inclusion criteria; 34 trials (33,793 participants) could be considered in the NMA (8 different treatment options). Bone mineral density We estimated that the bone mineral density of participants with no treatment/placebo measured as total T-score was -1.34. Evidence from the NMA (9 trials; 1166 participants) suggests that treatment with ibandronate (T-score -0.77; MD 0.57, 95% CI -0.05 to 1.19) may slightly increase bone mineral density (low certainty) and treatment with zoledronic acid (T-score -0.45; MD 0.89, 95% CI 0.62 to 1.16) probably slightly increases bone mineral density compared to no treatment/placebo (moderate certainty). Risedronate (T-score -1.08; MD 0.26, 95% CI -0.32 to 0.84) may result in little to no difference compared to no treatment/placebo (low certainty). We are uncertain whether alendronate (T-score 2.36; MD 3.70, 95% CI -2.01 to 9.41) increases bone mineral density compared to no treatment/placebo (very low certainty). Quality of life No quantitative analyses could be performed for quality of life, as only three studies reported this outcome. All three studies showed only minimal differences between the respective interventions examined. Overall fracture rate We estimated that 70 of 1000 participants with no treatment/placebo had fractures. Evidence from the NMA (16 trials; 19,492 participants) indicates that treatment with clodronate or ibandronate (42 of 1000; RR 0.60, 95% CI 0.39 to 0.92; 40 of 1000; RR 0.57, 95% CI 0.38 to 0.86, respectively) decreases the number of fractures compared to no treatment/placebo (high certainty). Denosumab or zoledronic acid (51 of 1000; RR 0.73, 95% CI 0.52 to 1.01; 55 of 1000; RR 0.79, 95% CI 0.56 to 1.11, respectively) probably slightly decreases the number of fractures; and risedronate (39 of 1000; RR 0.56, 95% CI 0.15 to 2.16) probably decreases the number of fractures compared to no treatment/placebo (moderate certainty). Pamidronate (106 of 1000; RR 1.52, 95% CI 0.75 to 3.06) probably increases the number of fractures compared to no treatment/placebo (moderate certainty). Overall survival We estimated that 920 of 1000 participants with no treatment/placebo survived overall. Evidence from the NMA (17 trials; 30,991 participants) suggests that clodronate (924 of 1000; HR 0.95, 95% CI 0.77 to 1.17), denosumab (927 of 1000; HR 0.91, 95% CI 0.69 to 1.21), ibandronate (915 of 1000; HR 1.06, 95% CI 0.83 to 1.34) and zoledronic acid (925 of 1000; HR 0.93, 95% CI 0.76 to 1.14) may result in little to no difference regarding overall survival compared to no treatment/placebo (low certainty). Additionally, we are uncertain whether pamidronate (905 of 1000; HR 1.20, 95% CI 0.81 to 1.78) decreases overall survival compared to no treatment/placebo (very low certainty). Osteonecrosis of the jaw We estimated that 1 of 1000 participants with no treatment/placebo developed osteonecrosis of the jaw. Evidence from the NMA (12 trials; 23,527 participants) suggests that denosumab (25 of 1000; RR 24.70, 95% CI 9.56 to 63.83), ibandronate (6 of 1000; RR 5.77, 95% CI 2.04 to 16.35) and zoledronic acid (9 of 1000; RR 9.41, 95% CI 3.54 to 24.99) probably increases the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (moderate certainty). Additionally, clodronate (3 of 1000; RR 2.65, 95% CI 0.83 to 8.50) may increase the occurrence of osteonecrosis of the jaw compared to no treatment/placebo (low certainty). Renal impairment We estimated that 14 of 1000 participants with no treatment/placebo developed renal impairment. Evidence from the NMA (12 trials; 22,469 participants) suggests that ibandronate (28 of 1000; RR 1.98, 95% CI 1.01 to 3.88) probably increases the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). Zoledronic acid (21 of 1000; RR 1.49, 95% CI 0.87 to 2.58) probably increases the occurrence of renal impairment while clodronate (12 of 1000; RR 0.88, 95% CI 0.55 to 1.39) and denosumab (11 of 1000; RR 0.80, 95% CI 0.54 to 1.19) probably results in little to no difference regarding the occurrence of renal impairment compared to no treatment/placebo (moderate certainty). AUTHORS' CONCLUSIONS When considering bone-modifying agents for managing bone loss in women with early or locally advanced breast cancer, one has to balance between efficacy and safety. Our findings suggest that bisphosphonates (excluding alendronate and pamidronate) or denosumab compared to no treatment or placebo likely results in increased bone mineral density and reduced fracture rates. Our survival analysis that included pre and postmenopausal women showed little to no difference regarding overall survival. These treatments may lead to more adverse events. Therefore, forming an overall judgement of the best ranked bone-modifying agent is challenging. More head-to-head comparisons, especially comparing denosumab with any bisphosphonate, are needed to address gaps and validate the findings of this review.
Collapse
Affiliation(s)
- Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tina Jakob
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alessandra Huth
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Moritz Ernst
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marco Kopp
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Achim Wöckel
- Department of Gynaecology and Obstetrics, University Hospital of Würzburg, Würzburg, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Dhesy-Thind S, Fletcher GG, Blanchette PS, Clemons MJ, Dillmon MS, Frank ES, Gandhi S, Gupta R, Mates M, Moy B, Vandenberg T, Van Poznak CH. Use of Adjuvant Bisphosphonates and Other Bone-Modifying Agents in Breast Cancer: A Cancer Care Ontario and American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2017; 35:2062-2081. [PMID: 28618241 DOI: 10.1200/jco.2016.70.7257] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose To make recommendations regarding the use of bisphosphonates and other bone-modifying agents as adjuvant therapy for patients with breast cancer. Methods Cancer Care Ontario and ASCO convened a Working Group and Expert Panel to develop evidence-based recommendations informed by a systematic review of the literature. Results Adjuvant bisphosphonates were found to reduce bone recurrence and improve survival in postmenopausal patients with nonmetastatic breast cancer. In this guideline, postmenopausal includes patients with natural menopause or that induced by ovarian suppression or ablation. Absolute benefit is greater in patients who are at higher risk of recurrence, and almost all trials were conducted in patients who also received systemic therapy. Most studies evaluated zoledronic acid or clodronate, and data are extremely limited for other bisphosphonates. While denosumab was found to reduce fractures, long-term survival data are still required. Recommendations It is recommended that, if available, zoledronic acid (4 mg intravenously every 6 months) or clodronate (1,600 mg/d orally) be considered as adjuvant therapy for postmenopausal patients with breast cancer who are deemed candidates for adjuvant systemic therapy. Further research comparing different bone-modifying agents, doses, dosing intervals, and durations is required. Risk factors for osteonecrosis of the jaw and renal impairment should be assessed, and any pending dental or oral health problems should be dealt with prior to starting treatment. Data for adjuvant denosumab look promising but are currently insufficient to make any recommendation. Use of these agents to reduce fragility fractures in patients with low bone mineral density is beyond the scope of the guideline. Recommendations are not meant to restrict such use of bone-modifying agents in these situations. Additional information at www.asco.org/breast-cancer-adjuvant-bisphosphonates-guideline , www.asco.org/guidelineswiki , https://www.cancercareontario.ca/guidelines-advice/types-of-cancer/breast .
Collapse
Affiliation(s)
- Sukhbinder Dhesy-Thind
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Glenn G Fletcher
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Phillip S Blanchette
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Mark J Clemons
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Melissa S Dillmon
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Elizabeth S Frank
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Sonal Gandhi
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Rasna Gupta
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Mihaela Mates
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Beverly Moy
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Ted Vandenberg
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| | - Catherine H Van Poznak
- Sukhbinder Dhesy-Thind, Juravinski Cancer Centre; Sukhbinder Dhesy-Thind and Glenn G. Fletcher, McMaster University, Hamilton, Ontario; Phillip S. Blanchette, Sunnybrook Odette Cancer Centre; Sonal Gandhi, Sunnybrook Health Sciences, Toronto, Ontario; Mark J. Clemons, The Ottawa Hospital Cancer Centre, Ottawa, Ontario; Rasna Gupta, Windsor Regional Cancer Program, Windsor, Ontario; Mihaela Mates, Kingston General Hospital, Kingston, Ontario; Ted Vandenberg, London Health Sciences Centre, London, Ontario, Canada; Melissa S. Dillmon, Harbin Clinic, Rome, GA; Elizabeth S. Frank, Lexington; Beverly Moy, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA; and Catherine H. Van Poznak, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
van Kerkhof LWM, Van Dycke KCG, Jansen EHJM, Beekhof PK, van Oostrom CTM, Ruskovska T, Velickova N, Kamcev N, Pennings JLA, van Steeg H, Rodenburg W. Diurnal Variation of Hormonal and Lipid Biomarkers in a Molecular Epidemiology-Like Setting. PLoS One 2015; 10:e0135652. [PMID: 26285127 PMCID: PMC4540433 DOI: 10.1371/journal.pone.0135652] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023] Open
Abstract
Introduction Many molecular epidemiology studies focusing on high prevalent diseases, such as metabolic disorders and cancer, investigate metabolic and hormonal markers. In general, sampling for these markers can occur at any time-point during the day or after an overnight fast. However, environmental factors, such as light exposure and food intake might affect the levels of these markers, since they provide input for the internal time-keeping system. When diurnal variation is larger than the inter-individual variation, time of day should be taken into account. Importantly, heterogeneity in diurnal variation and disturbance of circadian rhythms among a study population might increasingly occur as a result of our increasing 24/7 economy and related variation in exposure to environmental factors (such as light and food). Aim The aim of the present study was to determine whether a set of often used biomarkers shows diurnal variation in a setting resembling large molecular epidemiology studies, i.e., non-fasted and limited control possibilities for other environmental influences. Results We show that markers for which diurnal variation is not an issue are adrenocorticotropic hormone, follicle stimulating hormone, estradiol and high-density lipoprotein. For all other tested markers diurnal variation was observed in at least one gender (cholesterol, cortisol, dehydroepiandrosterone sulfate, free fatty acids, low-density lipoprotein, luteinizing hormone, prolactin, progesterone, testosterone, triglycerides, total triiodothyronine and thyroid-stimulating hormone) or could not reliably be detected (human growth hormone). Discussion Thus, studies investigating these markers should take diurnal variation into account, for which we provide some options. Furthermore, our study indicates the need for investigating diurnal variation (in literature or experimentally) before setting up studies measuring markers in routine and controlled settings, especially since time-of-day likely matters for many more markers than the ones investigated in the present study.
Collapse
Affiliation(s)
- Linda W. M. van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kirsten C. G. Van Dycke
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eugene H. J. M. Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Piet K. Beekhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Conny T. M. van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nevenka Velickova
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nikola Kamcev
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|