1
|
Egeland EV, Seip K, Skourti E, Øy GF, Pettersen SJ, Pandya AD, Dahle MA, Haugen MH, Kristian A, Nakken S, Engebraaten O, Mælandsmo GM, Prasmickaite L. The SRC-family serves as a therapeutic target in triple negative breast cancer with acquired resistance to chemotherapy. Br J Cancer 2024:10.1038/s41416-024-02875-5. [PMID: 39390250 DOI: 10.1038/s41416-024-02875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Resistance to chemotherapy, combined with heterogeneity among resistant tumors, represents a significant challenge in the clinical management of triple negative breast cancer (TNBC). By dissecting molecular pathways associated with treatment resistance, we sought to define patient sub-groups and actionable targets for next-line treatment. METHODS Bulk RNA sequencing and reverse phase protein array profiling were performed on isogenic patient-derived xenografts (PDX) representing paclitaxel-sensitive and -resistant tumors. Pathways identified as upregulated in the resistant model were further explored as targets in PDX explants. Their clinical relevance was assessed in two distinct patient cohorts (NeoAva and MET500). RESULTS Increased activity in signaling pathways involving SRC-family kinases (SFKs)- and MAPK/ERK was found in treatment resistant PDX, with targeted inhibitors being significantly more potent in resistant tumors. Up-regulation of SFKs- and MAPK/ERK-pathways was also detected in a sub-group of chemoresistant patients after neoadjuvant treatment. Furthermore, High SFK expression (of either SRC, FYN and/or YES1) was detected in metastatic lesions of TNBC patients with fast progressing disease (median disease-free interval 27 vs 105 months). CONCLUSIONS Upregulation of SFK-signaling is found in a subset of chemoresistant tumors and is persistent in metastatic lesions. Based on pre-clinical results, these patients may respond favorably to treatment targeting SFKs.
Collapse
Affiliation(s)
- Eivind Valen Egeland
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Kotryna Seip
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eleni Skourti
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Solveig J Pettersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Abhilash D Pandya
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maria A Dahle
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mads H Haugen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Alexander Kristian
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav Engebraaten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Insitute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway-University of Tromsø, Tromsø, Norway
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Angel CZ, Beattie S, Hanif EAM, Ryan MP, Guerra Liberal FDC, Zhang SD, Monteith S, Buckley NE, Parker E, Haynes S, McIntyre AJ, Haddock P, Sharifova M, Branco CM, Mullan PB. A SRC-slug-TGFβ2 signaling axis drives poor outcomes in triple-negative breast cancers. Cell Commun Signal 2024; 22:454. [PMID: 39327614 PMCID: PMC11426005 DOI: 10.1186/s12964-024-01793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Treatment options for the Triple-Negative Breast Cancer (TNBC) subtype remain limited and the outcome for patients with advanced TNBC is very poor. The standard of care is chemotherapy, but approximately 50% of tumors develop resistance. METHODS We performed gene expression profiling of 58 TNBC tumor samples by microarray, comparing chemosensitive with chemoresistant tumors, which revealed that one of the top upregulated genes was TGFβ2. A connectivity mapping bioinformatics analysis predicted that the SRC inhibitor Dasatinib was a potential pharmacological inhibitor of chemoresistant TNBCs. Claudin-low TNBC cell lines were selected to represent poor-outcome, chemoresistant TNBC, for in vitro experiments and in vivo models. RESULTS In vitro, we identified a signaling axis linking SRC, AKT and ERK2, which in turn upregulated the stability of the transcription factors, Slug and Snail. Slug was shown to repress TGFβ2-antisense 1 to promote TGFβ2 signaling, upregulating cell survival via apoptosis and DNA-damage responses. Additionally, an orthotopic allograft in vivo model demonstrated that the SRC inhibitor Dasatinib reduced tumor growth as a single agent, and enhanced responses to the TNBC mainstay drug, Epirubicin. CONCLUSION Targeting the SRC-Slug-TGFβ2 axis may therefore lead to better treatment options and improve patient outcomes in this highly aggressive subpopulation of TNBCs.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Shannon Beattie
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Micheal P Ryan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Shu-Dong Zhang
- C-TRIC Building, Altnagelvin Area Hospital, Ulster University, Derry, Northern Ireland
| | - Scott Monteith
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Emma Parker
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Shannon Haynes
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Alexander J McIntyre
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Paula Haddock
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Madina Sharifova
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Cristina M Branco
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Paul B Mullan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
3
|
Liu Y, Chen H, Chen T, Qiu G, Han Y. The emerging role of osteoclasts in the treatment of bone metastases: rationale and recent clinical evidence. Front Oncol 2024; 14:1445025. [PMID: 39148909 PMCID: PMC11324560 DOI: 10.3389/fonc.2024.1445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The occurrence of bone metastasis is a grave medical concern that substantially impacts the quality of life in patients with cancer. The precise mechanisms underlying bone metastasis remain unclear despite extensive research efforts, and efficacious therapeutic interventions are currently lacking. The ability of osteoclasts to degrade the bone matrix makes them a crucial factor in the development of bone metastasis. Osteoclasts are implicated in several aspects of bone metastasis, encompassing the formation of premetastatic microenvironment, suppression of the immune system, and reactivation of quiescent tumor cells. Contemporary clinical interventions targeting osteoclasts have proven effective in mitigating bone-related symptoms in patients with cancer. This review comprehensively analyzes the mechanistic involvement of osteoclasts in bone metastasis, delineates potential therapeutic targets associated with osteoclasts, and explores clinical evidence regarding interventions targeting osteoclasts.
Collapse
Affiliation(s)
- Youjun Liu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Huanshi Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Tong Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Guowen Qiu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Integrative and Comprehensive Pan-Cancer Analysis of Lymphocyte-Specific Protein Tyrosine Kinase in Human Tumors. Int J Mol Sci 2022; 23:ijms232213998. [PMID: 36430477 PMCID: PMC9697346 DOI: 10.3390/ijms232213998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is common in a variety of hematologic malignancies but comparatively less common in solid tumors. This study aimed to explore the potential diagnostic and prognostic value of LCK across tumors through integrative and comprehensive pan-cancer analysis, as well as experimental validation. Multiple databases were used to explore the expression, alteration, prognostic value, association with immune infiltration, and potential functional pathways of LCK in pan-cancers. The results were further validated by western blotting and qPCR of patient samples as well as tumor cell lines. High LCK expression typically represents a better prognosis. Notably, drug sensitivity prediction of LCK identified P-529 as a candidate for drug development. Gene Annotations (GO) and KEGG analyses showed significant enrichment of PD-L1 and the T-cell receptor pathway. The results from patient samples and tumor cell lines confirmed these conclusions in LIHC. In conclusion, LCK is differentially expressed in multiple tumors and normal tissues. Further analysis highlighted its association with prognostic implications, pan-cancer genetic alterations, and immune signatures. Our data provide evidence for a diagnostic marker of LCK and the possible use of LCK as a target for the treatment of tumors.
Collapse
|
5
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
6
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
7
|
Chen S, Ren Y, Dai H, Li Y, Lan B, Ma F. Drug-induced pulmonary toxicity in breast cancer patients treated with systemic therapy: a systematic literature review. Expert Rev Anticancer Ther 2021; 21:1399-1410. [PMID: 34672214 DOI: 10.1080/14737140.2021.1996229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Drug-induced pulmonary toxicity (DIPT) associated with breast cancer (BC) therapy has been a major concern in recent times. DIPT may not be attributed to a single type of therapy because of the concomitant use of other anticancer drugs or along with radiotherapy, which is an independent risk factor for pulmonary toxicity. AREAS COVERED In this systematic literature review, we evaluated the probable cause and prevalence of DIPT in various systemic therapies used in BC treatment. A literature search was conducted in PubMed, Embase and Cochrane database, up to October 2020. Clinical studies reporting DIPT and related clinical manifestations due to systemic therapy in BC treatment were included. A total of 1749 articles were retrieved, and 193 articles were included. EXPERT OPINION : The leading cause of DIPT among patients with BC was targeted therapy followed by chemotherapy containing regimens. A total of 17 studies reported 35 deaths (15 deaths in chemotherapy) due to DIPT. Physicians must take extra precaution while prescribing systemic therapy known to be associated with DIPT and need to be familiar with early diagnosis of DIPT in order to avoid respiratory-related complications during treatment in BC patients.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Yanhong Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Disease, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Disease, Beijing, China
| | - Yiqun Li
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Lan
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Barcus CE, Hwang PY, Morikis V, Brenot A, Pence P, Clarke M, Longmore GD. Tyrosine kinase-independent actions of DDR2 in tumor cells and cancer-associated fibroblasts influence tumor invasion, migration and metastasis. J Cell Sci 2021; 134:272035. [PMID: 34477203 PMCID: PMC8542384 DOI: 10.1242/jcs.258431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
Both tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity has been hypothesized to be required for the metastatic activity of DDR2; however, inhibition of DDR2 tyrosine kinase activity, along with that of other RTKs, has failed to provide clinically relevant responses in metastatic patients. Here, we show that tyrosine kinase activity-independent action of DDR2 in tumor cells can support Matrigel invasion and in vivo metastasis. Paracrine actions of DDR2 in tumor cells and cancer-associated fibroblasts (CAFs) also support tumor invasion, migration and lung colonization in vivo. These data suggest that tyrosine kinase-independent functions of DDR2 could explain failures of tyrosine kinase inhibitor treatment in metastatic breast cancer patients and highlight the need for alternative therapeutic strategies that inhibit both tyrosine kinase-dependent and -independent actions of RTKs in the treatment of breast cancer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Craig E. Barcus
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Priscilla Y. Hwang
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA,College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vasilios Morikis
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Audrey Brenot
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Patrick Pence
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Maria Clarke
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Gregory D. Longmore
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA,Author for correspondence ()
| |
Collapse
|
9
|
Falvello V, Van Poznak C. Updates in Management of Bone Metastatic Disease in Primary Solid Tumors with Systemic Therapies. Curr Osteoporos Rep 2021; 19:452-461. [PMID: 34191239 DOI: 10.1007/s11914-021-00689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight novel and impactful discoveries in systemic treatment of bone metastatic disease in solid tumors published within the past 5 years. RECENT FINDINGS Major developments in systemic treatment of bone metastatic disease in solid tumors include evidence that decreasing frequency of dosing zoledronic acid in metastatic breast and prostate cancer maintains efficacy in preventing skeletal-related events while decreasing costs. The landmark findings on the use of Radium-223 to treat metastatic prostate cancer were reported in 2013. Recently, it has been found that not all systemic therapy combinations with Radium-223 are necessarily safe or effective unless bone-targeted therapy is also included in the regimen. More cost-effective dosing intervals of zoledronic acid and efficacy and safety nuances of combination radiopharmaceutical and chemotherapy treatment have been better delineated.
Collapse
Affiliation(s)
- Virginia Falvello
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Catherine Van Poznak
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Weiße J, Rosemann J, Müller L, Kappler M, Eckert AW, Glaß M, Misiak D, Hüttelmaier S, Ballhausen WG, Hatzfeld M, Haemmerle M, Gutschner T. Identification of lymphocyte cell-specific protein-tyrosine kinase (LCK) as a driver for invasion and migration of oral cancer by tumor heterogeneity exploitation. Mol Cancer 2021; 20:88. [PMID: 34116687 PMCID: PMC8194179 DOI: 10.1186/s12943-021-01384-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need. However, tumors are comprised of a heterogeneous collection of cells with distinct genetic and molecular profiles that can differentially promote metastasis making therapy development a challenging task. Here, we leveraged intratumoral heterogeneity in order to identify drivers of cancer cell motility that might be druggable targets for anti-metastasis therapy. METHODS We used 2D migration and 3D matrigel-based invasion assays to characterize the invasive heterogeneity among and within four human oral cancer cell lines in vitro. Subsequently, we applied mRNA-sequencing to map the transcriptomes of poorly and strongly invasive subclones as well as primary tumors and matched metastasis. RESULTS We identified SAS cells as a highly invasive oral cancer cell line. Clonal analysis of SAS yielded a panel of 20 subclones with different invasive capacities. Integrative gene expression analysis identified the Lymphocyte cell-specific protein-tyrosine kinase (LCK) as a druggable target gene associated with cancer cell invasion and metastasis. Inhibition of LCK using A-770041 or dasatinib blocked invasion of highly aggressive SAS cells. Interestingly, reduction of LCK activity increased the formation of adherens junctions and induced cell differentiation. CONCLUSION Analysis of invasive heterogeneity led to the discovery of LCK as an important regulator of motility in oral cancer cells. Hence, small molecule mediated inhibition of LCK could be a promising anti-metastasis therapy option for oral cancer patients.
Collapse
Affiliation(s)
- Jonas Weiße
- Junior Research Group 'RNA biology and pathogenesis', Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Julia Rosemann
- Junior Research Group 'RNA biology and pathogenesis', Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Lisa Müller
- Institute of Molecular Medicine, Section for Pathobiochemistry, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Alexander W Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471, Nuremberg, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Wolfgang G Ballhausen
- Institute of Molecular Medicine, Section for Molecular Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112, Halle, Germany
| | - Tony Gutschner
- Junior Research Group 'RNA biology and pathogenesis', Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
11
|
Venetis K, Piciotti R, Sajjadi E, Invernizzi M, Morganti S, Criscitiello C, Fusco N. Breast Cancer with Bone Metastasis: Molecular Insights and Clinical Management. Cells 2021; 10:cells10061377. [PMID: 34199522 PMCID: PMC8229615 DOI: 10.3390/cells10061377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the remarkable advances in the diagnosis and treatment of breast cancer patients, the presence or development of metastasis remains an incurable condition. Bone is one of the most frequent sites of distant dissemination and negatively impacts on patient's survival and overall frailty. The interplay between tumor cells and the bone microenvironment induces bone destruction and tumor progression. To date, the clinical management of bone metastatic breast cancer encompasses anti-tumor systemic therapies along with bone-targeting agents, aimed at slowing bone resorption to reduce the risk of skeletal-related events. However, their effect on patients' survival remains controversial. Unraveling the biology that governs the interplay between breast neoplastic cells and bone tissue would provide means for the development of new therapeutic agents. This article outlines the state-of-the art in the characterization and targeting the bone metastasis in breast cancer, focusing on the major clinical and translational studies on this clinically relevant topic.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Roberto Piciotti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Stefania Morganti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: (C.C.); (N.F.); Tel.: +39-02-9437-2079 (N.F.)
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (K.V.); (R.P.); (E.S.); (S.M.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: (C.C.); (N.F.); Tel.: +39-02-9437-2079 (N.F.)
| |
Collapse
|
12
|
Overview of New Treatments with Immunotherapy for Breast Cancer and a Proposal of a Combination Therapy. Molecules 2020; 25:molecules25235686. [PMID: 33276556 DOI: 10.3390/molecules25235686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023] Open
Abstract
According to data from the U.S. National Cancer Institute, cancer is one of the leading causes of death worldwide with approximately 14 million new cases and 8.2 million cancer-related deaths in 2018. More than 60% of the new annual cases in the world occur in Africa, Asia, Central America, and South America, with 70% of cancer deaths in these regions. Breast cancer is the most common cancer in women, with 266,120 new cases in American women and an estimated 40,920 deaths for 2018. Approximately one in six women diagnosed with breast cancer will die in the coming years. Recently, novel therapeutic strategies have been implemented in the fight against breast cancer, including molecules able to block signaling pathways, an inhibitor of poly [ADP-ribose] polymerase (PARP), growth receptor blocker antibodies, or those that reactivate the immune system by inhibiting the activities of inhibitory receptors like cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death protein 1 (PD-1). However, novel targets include reactivating the Th1 immune response, changing tumor microenvironment, and co-activation of other components of the immune response such as natural killer cells and CD8+ T cells among others. In this article, we review advances in the treatment of breast cancer focused essentially on immunomodulatory drugs in targeted cancer therapy. Based on this knowledge, we formulate a proposal for the implementation of combined therapy using an extracorporeal immune response reactivation model and cytokines plus modulating antibodies for co-activation of the Th1- and natural killer cell (NK)-dependent immune response, either in situ or through autologous cell therapy. The implementation of "combination immunotherapy" is new hope in breast cancer treatment. Therefore, we consider the coordinated activation of each cell of the immune response that would probably produce better outcomes. Although more research is required, the results recently achieved by combination therapy suggest that for most, if not all, cancer patients, this tailored therapy may become a realistic approach in the near future.
Collapse
|
13
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
14
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
15
|
Gurbani D, Du G, Henning NJ, Rao S, Bera AK, Zhang T, Gray NS, Westover KD. Structure and Characterization of a Covalent Inhibitor of Src Kinase. Front Mol Biosci 2020; 7:81. [PMID: 32509799 PMCID: PMC7248381 DOI: 10.3389/fmolb.2020.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Unregulated Src activity promotes malignant processes in cancer, but no Src-directed targeted therapies are used clinically, possibly because early Src inhibitors produce off-target effects leading to toxicity. Improved selective Src inhibitors may enable Src-directed therapies. Previously, we reported an irreversible Src inhibitor, DGY-06-116, based on the hybridization of dasatinib and a promiscuous covalent kinase probe SM1-71. Here, we report biochemical and biophysical characterization of this compound. An x-ray co-crystal structure of DGY-06-116: Src shows a covalent interaction with the kinase p-loop and occupancy of the back hydrophobic kinase pocket, explaining its high potency, and selectivity. However, a reversible analog also shows similar potency. Kinetic analysis shows a slow inactivation rate compared to other clinically approved covalent kinase inhibitors, consistent with a need for p-loop movement prior to covalent bond formation. Overall, these results suggest that a strong reversible interaction is required to allow sufficient time for the covalent reaction to occur. Further optimization of the covalent linker may improve the kinetics of covalent bond formation.
Collapse
Affiliation(s)
- Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Nathaniel J. Henning
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Suman Rao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States
- Harvard Program in Therapeutic Science (HiTS), Harvard Medical School, Boston, MA, United States
| | - Asim K. Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Tinghu Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
16
|
Haider MT, Saito H, Zarrer J, Uzhunnumpuram K, Nagarajan S, Kari V, Horn-Glander M, Werner S, Hesse E, Taipaleenmäki H. Breast cancer bone metastases are attenuated in a Tgif1-deficient bone microenvironment. Breast Cancer Res 2020; 22:34. [PMID: 32272947 PMCID: PMC7146874 DOI: 10.1186/s13058-020-01269-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Osteoclast activation is a hallmark of breast cancer-induced bone disease while little is known about the role of osteoblasts in this process. Recently, we identified the homeodomain protein TG-interacting factor-1 (Tgif1) as a crucial regulator of osteoblast function. In this study, we demonstrate that lack of Tgif1 also restricts the progression of breast cancer bone metastases. Methods Transwell migration assays were used to investigate the osteoblast-breast cancer cell interaction in vitro. Molecular analyses included RNA sequencing, immunoblotting, and qRT-PCR. To determine the role of Tgif1 in metastatic bone disease, 4T1 breast cancer cells were injected intracardially into mice with a germ line deletion of Tgif1 (Tgif1−/−) or control littermates (Tgif1+/+). Progression of bone metastases and alterations in the bone microenvironment were assessed using bioluminescence imaging, immunofluorescence staining, confocal microscopy, and histomorphometry. Results Medium conditioned by osteoblasts stimulated breast cancer cell migration, indicating a potential role of osteoblasts during bone metastasis progression. Tgif1 expression was strongly increased in osteoblasts upon stimulation by breast cancer cells, demonstrating the implication of Tgif1 in the osteoblast-breast cancer cell interaction. Indeed, conditioned medium from osteoblasts of Tgif1−/− mice failed to induce breast cancer cell migration compared to control, suggesting that Tgif1 in osteoblasts augments cancer cell motility. Semaphorin 3E (Sema3E), which is abundantly secreted by Tgif1−/− osteoblasts, dose-dependently reduced breast cancer cell migration while silencing of Sema3E expression in Tgif1−/− osteoblasts partially restored the impaired migration. In vivo, we observed a decreased number of breast cancer bone metastases in Tgif1−/− mice compared to control littermates. Consistently, the presence of single breast cancer cells or micro-metastases in the tibiae was reduced in Tgif1−/− mice. Breast cancer cells localized in close proximity to Endomucin-positive vascular cells as well as to osteoblasts. Although Tgif1 deficiency did not affect the bone marrow vasculature, the number and activity of osteoblasts were reduced compared to control. This suggests that the protective effect on bone metastases might be mediated by osteoblasts rather than by the bone marrow vasculature. Conclusion We propose that the lack of Tgif1 in osteoblasts increases Sema3E expression and attenuates breast cancer cell migration as well as metastases formation.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hiroaki Saito
- Institute of Molecular Musculoskeletal Research, University Hospital, LMU Munich, Munich, Germany
| | - Jennifer Zarrer
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Uzhunnumpuram
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany.,Present address: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Michael Horn-Glander
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hesse
- Institute of Molecular Musculoskeletal Research, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Dasatinib prevents skeletal metastasis of osteotropic MDA-MB-231 cells in a xenograft mouse model. Arch Gynecol Obstet 2020; 301:1493-1502. [PMID: 32170411 DOI: 10.1007/s00404-020-05496-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/05/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Bone metastasis in breast cancer has been linked to activity of c-Src kinase, one of the extensively explored tyrosine kinases in cell biology. The impact of TNF-related apoptosis inducing ligand (TRAIL) and TRAIL receptors has just recently been integrated into this conception. METHODS An osteotropic clone of MDA-MB-231 cells simulated a model for bone metastasis of triple-negative breast cancer (TNBC). The effects of Dasatinib, a clinically established inhibitor of Src kinases family and Abl were evaluated in vitro and in vivo. In vivo effects of Dasatinib treatment on the occurrence of skeletal metastases were tested in a xenograft mouse model after intra-cardiac injection of osteotropic MDA-MB-231-cells. Ex vivo analyses of the bone sections confirmed intraosseous growth of metastases and allowed determination of osteoclastic activity. RESULTS Treatment of osteotropic MDA-MB-231 cells with Dasatinib inhibited proliferation rates in vitro. A shift in TRAIL-receptor expression towards an induction of oncogenic TRAIL-R2 was observed. In vivo, 15 of 30 mice received an intra-peritoneal treatment with Dasatinib. These mice showed significantly less skeletal metastases in bioluminescence scans. Moreover, a pronounced increase in bone volume was observed in the treatment group, as detected by µ-Computed Tomography. Dasatinib treatment also led to a greater increase in bone density in tibiae without metastatic affection, which was accompanied by reduced recruitment of osteoclasts. CONCLUSION Our observations support the concept of utilizing Dasatinib in targeting early-stage bone metastatic TNBC and sustaining bone health.
Collapse
|
18
|
D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol 2019; 15:004-4. [PMID: 30937279 PMCID: PMC6429006 DOI: 10.1016/j.jbo.2018.10.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Bone metastases (BM) are a common complication of cancer, whose management often requires a multidisciplinary approach. Despite the recent therapeutic advances, patients with BM may still experience skeletal-related events and symptomatic skeletal events, with detrimental impact on quality of life and survival. A deeper knowledge of the mechanisms underlying the onset of lytic and sclerotic BM has been acquired in the last decades, leading to the development of bone-targeting agents (BTA), mainly represented by anti-resorptive drugs and bone-seeking radiopharmaceuticals. Recent pre-clinical and clinical studies have showed promising effects of novel agents, whose safety and efficacy need to be confirmed by prospective clinical trials. Among BTA, adjuvant bisphosphonates have also been shown to reduce the risk of BM in selected breast cancer patients, but failed to reduce the incidence of BM from lung and prostate cancer. Moreover, adjuvant denosumab did not improve BM free survival in patients with breast cancer, suggesting the need for further investigation to clarify BTA role in early-stage malignancies. The aim of this review is to describe BM pathogenesis and current treatment options in different clinical settings, as well as to explore the mechanism of action of novel potential therapeutic agents for which further investigation is needed.
Collapse
Key Words
- ActRIIA, activin-A type IIA receptor
- BC, breast cancer
- BM, bone metastases
- BMD, bone mineral density
- BMPs, bone morphogenetic proteins
- BMSC, bone marrow stromal cells
- BPs, bisphosphonates
- BTA, bone targeting agents
- BTM, bone turnover markers
- Bone metastases
- Bone targeting agents
- CCR, chemokine-receptor
- CRPC, castration-resistant PC
- CXCL-12, C–X–C motif chemokine-ligand-12
- CXCR-4, chemokine-receptor-4
- DFS, disease-free survival
- DKK1, dickkopf1
- EBC, early BC
- ECM, extracellular matrix
- ET-1, endothelin-1
- FDA, food and drug administration
- FGF, fibroblast growth factor
- GAS6, growth-arrest specific-6
- GFs, growth factors
- GnRH, gonadotropin-releasing hormone
- HER-2, human epidermal growth factor receptor 2
- HR, hormone receptor
- IL, interleukin
- LC, lung cancer
- MAPK, mitogen-activated protein kinase
- MCSF, macrophage colony-stimulating factor
- MCSFR, MCSF receptor
- MIP-1α, macrophage inflammatory protein-1 alpha
- MM, multiple myeloma
- MPC, malignant plasma cells
- N-BPs, nitrogen-containing BPs
- NF-κB, nuclear factor-κB
- ONJ, osteonecrosis of the jaw
- OS, overall survival
- Osteotropic tumors
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression-free survival
- PIs, proteasome inhibitors
- PSA, prostate specific antigen
- PTH, parathyroid hormone
- PTH-rP, PTH related protein
- QoL, quality of life
- RANK-L, receptor activator of NF-κB ligand
- RT, radiation therapy
- SREs, skeletal-related events
- SSEs, symptomatic skeletal events
- Skeletal related events
- TGF-β, transforming growth factor β
- TK, tyrosine kinase
- TKIs, TK inhibitors
- TNF, tumornecrosis factor
- VEGF, vascular endothelial growth factor
- VEGFR, VEGF receptor
- mTOR, mammalian target of rapamycin
- non-N-BPs, non-nitrogen containing BPs
- v-ATPase, vacuolar-type H+ ATPase
Collapse
Affiliation(s)
- Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| | - Robert Coleman
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Janet Brown
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
19
|
Abstract
Bone is the most common site of metastasis for breast cancer. Bone metastasis significantly affects both quality of life and survival of the breast cancer patient. Clinically, complications secondary to bone metastasis include pain, pathologic fractures, spinal cord compression, and hypercalcemia of malignancy. Because bone metastasis is extremely common in patients with metastatic breast cancer, clinical management of bone metastases is an important and challenging aspect of treatment in the metastatic setting.The skeleton is a metabolically active organ system that undergoes continuous remodeling throughout life. A delicate balance of the bone-forming osteoblasts and bone-resorbing osteoclasts in the dynamic microenvironment of the skeleton maintains normal bone remodeling and integrity. The presence of metastatic lesions in bone disrupts the normal bone microenvironment and upsets the fine balance between the key components. The changes in the bone microenvironment then create a vicious cycle that further promotes bone destruction and tumor progression.Various therapeutic options are available for bone metastases of breast cancer. Treatment can be tailored for each patient and, often requires multiple therapeutic interventions. Commonly used modalities include local therapies such as surgery, radiation therapy and radiofrequency ablation (RFA) together with systemic therapies such as endocrine therapy, chemotherapy, monoclonal antibody-based therapy, bone-enhancing therapy and radioisotope therapy. Despite the use of various therapeutic modalities, bone metastases eventually become resistant to therapy, and disease progresses.In this chapter, we describe the clinical picture and biological mechanism of bone metastases in breast cancer. We also discuss known risk factors as well as detection and assessment of bone metastases. We present therapeutic options for bone metastasis using a multidisciplinary approach. Further, we describe future directions for bone metastasis management, focusing on novel bone-specific targeted therapies.
Collapse
|
20
|
Ye Z, Wang C, Wan S, Mu Z, Zhang Z, Abu-Khalaf MM, Fellin FM, Silver DP, Neupane M, Jaslow RJ, Bhattacharya S, Tsangaris TN, Chervoneva I, Berger A, Austin L, Palazzo JP, Myers RE, Pancholy N, Toorkey D, Yao K, Krall M, Li X, Chen X, Fu X, Xing J, Hou L, Wei Q, Li B, Cristofanilli M, Yang H. Association of clinical outcomes in metastatic breast cancer patients with circulating tumour cell and circulating cell-free DNA. Eur J Cancer 2019; 106:133-143. [PMID: 30528798 PMCID: PMC6347110 DOI: 10.1016/j.ejca.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Both circulating tumour cell (CTC) and total circulating cell-free DNA (ccfDNA) predict cancer patient prognosis. However, no study has explored the prognostic value of the combined use of CTC and ccfDNA. We aimed to investigate individual and joint effects of CTC and ccfDNA on clinical outcomes of metastatic breast cancer (MBC) patients. METHODS We collected 227 blood samples from 117 MBC patients. CTCs were enumerated using the CellSearch System. ccfDNAs were quantified by quantitative real-time polymerase chain reaction and Qubit fluorometer. The individual and joint effects of CTC and ccfDNA levels on patient progression-free survival (PFS) and overall survival (OS) were analysed using Cox proportional hazards models. RESULTS Compared to patients with <5 CTCs, patients with ≥5 CTCs had a 2.58-fold increased risk of progression and 3.63-fold increased risk of death. High level of ccfDNA was associated with a 2.05-fold increased risk of progression and 3.56-fold increased risk of death. These associations remained significant after adjusting for other important clinical covariates and CTC/ccfDNA levels. CTC and ccfDNA levels had a joint effect on patient outcomes. Compared to patients with low levels of both CTC and ccfDNA, those with high levels of both markers exhibited a >17-fold increased death risk (P < 0.001). Moreover, longitudinal analysis of 132 samples from 22 patients suggested that the inconsistency between CTC level and outcome in some patients could possibly be explained by ccfDNA level. CONCLUSIONS CTC and total ccfDNA levels were individually and jointly associated with PFS and OS in MBC patients.
Collapse
Affiliation(s)
- Zhong Ye
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chun Wang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shaogui Wan
- Institute of Pharmacy, Pharmaceutical College, Henan University, Kaifeng, Henan 475004, China
| | - Zhaomei Mu
- Department of Medicine, Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhenchao Zhang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maysa M Abu-Khalaf
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Frederick M Fellin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel P Silver
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manish Neupane
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rebecca J Jaslow
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Saveri Bhattacharya
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Theodore N Tsangaris
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam Berger
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laura Austin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Juan P Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald E Myers
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Neha Pancholy
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Darayus Toorkey
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kaelan Yao
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Max Krall
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiuling Li
- Department of Gastroenterology, People's Hospital of Henan Province, Zhengzhou, Henan 450003, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Xiuhong Fu
- Center for Reproductive Medicine and Genetics, Central Hospital of Luohe, Luohe, Henan 462300, China
| | - Jinliang Xing
- Experimental Teaching Center, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiang Wei
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bingshan Li
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
22
|
Morris PG, Rota S, Cadoo K, Zamora S, Patil S, D'Andrea G, Gilewski T, Bromberg J, Dang C, Dickler M, Modi S, Seidman AD, Sklarin N, Norton L, Hudis CA, Fornier MN. Phase II Study of Paclitaxel and Dasatinib in Metastatic Breast Cancer. Clin Breast Cancer 2018; 18:387-394. [PMID: 29680193 DOI: 10.1016/j.clbc.2018.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Overexpression and activation of tyrosine kinase Src has been linked to breast carcinogenesis and bone metastases. We showed the feasibility of combining the SRC inhibitor dasatinib with weekly paclitaxel in patients with metastatic breast cancer (MBC) and herein report the subsequent phase II trial. PATIENTS AND METHODS Patients had received ≤ 2 chemotherapy regimens for measurable, HER2-negative MBC. Patients received paclitaxel and dasatinib (120 mg daily) and were assessed according to Response Evaluation Criteria in Solid Tumors for overall response rate (ORR), the primary end point. Secondary end points included progression-free survival (PFS) and overall survival (OS). A 30% ORR (n = 55) was deemed worthy of further investigation. Exploratory biomarkers included N-telopeptide (NTX) and plasma vascular epidermal growth factor (VEGF) receptor 2 as predictors of clinical benefit. RESULTS From March 2010 to March 2014, 40 patients, including 2 men enrolled. The study was stopped early because of slow accrual. Overall, 32 patients (80%) had estrogen receptor-positive tumors and 23 (58%) had previously received taxanes. Of the 35 assessable patients, 1 (3%) had complete response and 7 (20%) partial response, resulting in an ORR of 23%. The median PFS and OS was 5.2 (95% confidence interval [CI], 2.9-9.9) and 20.6 (95% CI, 12.9-25.2) months, respectively. As expected, fatigue (75%), neuropathy (65%), and diarrhea (50%) were common side effects, but were generally low-grade. Median baseline NTX was similar in patients who had clinical benefit (8.2 nmol BCE) and no clinical benefit (10.9 nmol BCE). Similarly, median baseline VEGF levels were similar between the 2 groups; 93.0 pg/mL versus 83.0 pg/mL. CONCLUSION This phase II study of dasatinib and paclitaxel was stopped early because of slow accrual but showed some clinical activity. Further study is not planned.
Collapse
Affiliation(s)
- Patrick G Morris
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY; Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland; Royal College of Surgeons of Ireland, Dublin, Ireland
| | - Selene Rota
- Department of Medical Oncology, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Karen Cadoo
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Stephen Zamora
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Sujata Patil
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Gabriella D'Andrea
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Theresa Gilewski
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Jacqueline Bromberg
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Chau Dang
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Maura Dickler
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Shanu Modi
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Andrew D Seidman
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Nancy Sklarin
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Larry Norton
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Clifford A Hudis
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Monica N Fornier
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY.
| |
Collapse
|
23
|
Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018; 96:63-78. [DOI: 10.1016/j.biocel.2018.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
|
24
|
Sgroi V, Bassanelli M, Roberto M, Iannicelli E, Porrini R, Pellegrini P, Tafuri A, Marchetti P. Complete response in advanced breast cancer patient treated with a combination of capecitabine, oral vinorelbine and dasatinib. Exp Hematol Oncol 2018; 7:2. [PMID: 29416938 PMCID: PMC5784669 DOI: 10.1186/s40164-018-0094-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 11/10/2022] Open
Abstract
Background Currently, there are no data available on the best choice of treatment in heavily pretreated patients with advanced breast cancer. However, the combination of oral vinorelbine and capecitabine has been demonstrated to be effective and safe in patients with advanced breast cancer pretreated with anthracycline. Furthermore, some studies assessed the activity of dasatinib, an oral tyrosine kinase inhibitor that inhibits five oncogenic tyrosine kinase families, alone or in combination with different chemotherapy in patients affected with advanced breast cancer. Case presentation A patient with metastatic breast cancer, hormone receptor positive and human epidermal grow factor receptor 2 negative, pretreated with epirubicine, taxanes and nab-paclitaxel, was submitted to third line chemotherapy with vinorelbine 60 mg/m2 on day 1, 8 plus capecitabine 1000 mg/m2 twice daily from day 1 to day 14 every 21 days. The patient was taking also dasatinib 100 mg once daily for chronic myeloid leukemia. The treatment was well tolerated and, after 15 months, computed tomography scan showed a complete response of liver metastases and bone stable disease. After another 28 months, a 18-fluorodeoxyglucose positron emission tomography scan showed a metabolic response of bone metastases without other site of disease. Conclusions This is the first case in literature about activity of dasatinib in combination with a chemotherapy schedule of oral vinorelbine and capecitabine in advanced breast cancer. This treatment showed both good tolerability and great activity with a long progression free survival of 54 months.
Collapse
Affiliation(s)
- V Sgroi
- 1Department of Molecular and Clinical Medicine, Medical Oncology Unit, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - M Bassanelli
- 1Department of Molecular and Clinical Medicine, Medical Oncology Unit, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - M Roberto
- 1Department of Molecular and Clinical Medicine, Medical Oncology Unit, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - E Iannicelli
- 2Department of Radiology, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - R Porrini
- 3Department of Molecular and Clinical Medicine, Hematology,, "Sapienza" University of Rome, Rome, Italy
| | - P Pellegrini
- 1Department of Molecular and Clinical Medicine, Medical Oncology Unit, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| | - A Tafuri
- 3Department of Molecular and Clinical Medicine, Hematology,, "Sapienza" University of Rome, Rome, Italy
| | - P Marchetti
- 1Department of Molecular and Clinical Medicine, Medical Oncology Unit, "Sapienza" University of Rome, Sant' Andrea Hospital, Rome, Italy
| |
Collapse
|
25
|
Takiguchi E, Nishimura M, Mineda A, Kawakita T, Abe A, Irahara M. Growth inhibitory effect of the Src inhibitor dasatinib in combination with anticancer agents on uterine cervical adenocarcinoma cells. Exp Ther Med 2017; 14:4293-4299. [PMID: 29067110 PMCID: PMC5647549 DOI: 10.3892/etm.2017.5061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Uterine cervical adenocarcinoma has a poor clinical prognosis when compared with squamous cell carcinoma. Therefore, the development of new treatment strategies for uterine cervical adenocarcinoma is necessary. Src is a proto-oncogene that is important in cancer progression. Dasatinib is a Src inhibitor that has been reported to be effective when used in combination with anticancer drugs. The present study aimed to confirm Src expression in human cervical adenocarcinoma cell lines and to determine the mechanism underlying the inhibitory effect of dasatinib on Src signaling in vitro. Western blot analysis was performed to investigate Src expression in cervical adenocarcinoma cell lines (HeLa and TCO-2 cells). The cells were cultured for 48 h with the addition of different concentrations of anticancer drugs (paclitaxel or oxaliplatin). Viable cell count was measured using a colorimetric (WST-1) assay. The concentrations of anticancer agents were fixed according to the results obtained, and the same experiments were performed using the drugs in combination with dasatinib at various concentrations to determine the concentrations that significantly affected the number of viable cells. The presence or absence of apoptosis was investigated using a caspase-3/7 assay. Signal transduction in each cell line was examined using western blotting. Src was activated in the two cell lines, and cell proliferation was significantly suppressed by each anticancer drug in combination with 10 µM dasatinib. Caspase-3/7 activity was also increased and Src signaling was suppressed by each anticancer drug in combination with dasatinib. In conclusion, Src is overexpressed in cervical adenocarcinoma cell lines, and dasatinib inhibits intracellular Src signaling and causes apoptosis. The results of the present study suggest that Src may be targeted in novel therapeutic strategies for cervical adenocarcinoma.
Collapse
Affiliation(s)
- Eri Takiguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayuka Mineda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Akiko Abe
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
26
|
The Src family kinase inhibitor dasatinib delays pain-related behaviour and conserves bone in a rat model of cancer-induced bone pain. Sci Rep 2017; 7:4792. [PMID: 28684771 PMCID: PMC5500481 DOI: 10.1038/s41598-017-05029-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Pain is a severe and debilitating complication of metastatic bone cancer. Current analgesics do not provide sufficient pain relief for all patients, creating a great need for new treatment options. The Src kinase, a non-receptor protein tyrosine kinase, is implicated in processes involved in cancer-induced bone pain, including cancer growth, osteoclastic bone degradation and nociceptive signalling. Here we investigate the role of dasatinib, an oral Src kinase family and Bcr-Abl tyrosine kinase inhibitor, in an animal model of cancer-induced bone pain. Daily administration of dasatinib (15 mg/kg, p.o.) from day 7 after inoculation of MRMT-1 mammary carcinoma cells significantly attenuated movement-evoked and non-evoked pain behaviour in cancer-bearing rats. Radiographic - and microcomputed tomographic analyses showed significantly higher relative bone density and considerably preserved bone micro-architecture in the dasatinib treated groups, suggesting a bone-preserving effect. This was supported by a significant reduction of serum TRACP 5b levels in cancer-bearing rats treated with 15 mg/kg dasatinib. Furthermore, immunoblotting of lumbar spinal segments showed an increased activation of Src but not the NMDA receptor subunit 2B. These findings support a role of dasatinib as a disease modifying drug in pain pathologies characterized by increased osteoclast activity, such as bone metastases.
Collapse
|
27
|
Matikas A, Foukakis T, Bergh J. Tackling endocrine resistance in ER-positive HER2-negative advanced breast cancer: A tale of imprecision medicine. Crit Rev Oncol Hematol 2017; 114:91-101. [DOI: 10.1016/j.critrevonc.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
|
28
|
Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat? Int J Mol Sci 2017; 18:ijms18010085. [PMID: 28054957 PMCID: PMC5297719 DOI: 10.3390/ijms18010085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the study of genomic alterations and protein expression involved in the pathways of breast cancer carcinogenesis has provided an increasing number of targets for drugs development in the setting of metastatic breast cancer (i.e., trastuzumab, everolimus, palbociclib, etc.) significantly improving the prognosis of this disease. These drugs target specific molecular abnormalities that confer a survival advantage to cancer cells. On these bases, emerging evidence from clinical trials provided increasing proof that the genetic landscape of any tumor may dictate its sensitivity or resistance profile to specific agents and some studies have already showed that tumors treated with therapies matched with their molecular alterations obtain higher objective response rates and longer survival. Predictive molecular biomarkers may optimize the selection of effective therapies, thus reducing treatment costs and side effects. This review offers an overview of the main molecular pathways involved in breast carcinogenesis, the targeted therapies developed to inhibit these pathways, the principal mechanisms of resistance and, finally, the molecular biomarkers that, to date, are demonstrated in clinical trials to predict response/resistance to targeted treatments in metastatic breast cancer.
Collapse
|