1
|
Nicoletto RE, Holdcraft CJ, Yin AC, Retzbach EP, Sheehan SA, Greenspan AA, Laugier CM, Trama J, Zhao C, Zheng H, Goldberg GS. Effects of cadherin mediated contact normalization on oncogenic Src kinase mediated gene expression and protein phosphorylation. Sci Rep 2024; 14:23942. [PMID: 39397108 PMCID: PMC11471763 DOI: 10.1038/s41598-024-75449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Nontransformed cells form heterotypic cadherin junctions with adjacent transformed cells to inhibit tumor cell growth and motility. Transformed cells must override this form of growth control, called "contact normalization", to invade and metastasize during cancer progression. Heterocellular cadherin junctions between transformed and nontransformed cells are needed for this process. However, specific mechanisms downstream of cadherin signaling have not been clearly elucidated. Here, we utilized a β-catenin reporter construct to determine if contact normalization affects Wnt signaling in transformed cells. β-catenin driven GFP expression in Src transformed mouse embryonic cells was decreased when cultured with cadherin competent nontransformed cells compared to transformed cells cultured with themselves, but not when cultured with cadherin deficient nontransformed cells. We also utilized a layered culture system to investigate the effects of oncogenic transformation and contact normalization on gene expression and oncogenic Src kinase mediated phosphorylation events. RNA-Seq analysis found that cadherin dependent contact normalization inhibited the expression of 22 transcripts that were induced by Src transformation, and increased the expression of 78 transcripts that were suppressed by Src transformation. Phosphoproteomic analysis of cells expressing a temperature sensitive Src kinase construct found that contact normalization decreased phosphorylation of 10 proteins on tyrosine residues that were phosphorylated within 1 h of Src kinase activation in transformed cells. Taken together, these results indicate that cadherin dependent contact normalization inhibits Wnt signaling to regulate oncogenic kinase activity and gene expression, particularly PDPN expression, in transformed cells in order to control tumor progression.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Ariel C Yin
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Amanda A Greenspan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Christopher M Laugier
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Jason Trama
- Medical Diagnostic Laboratories, 2439 Kuser Rd, Hamilton Township, NJ, 08690, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Gary S Goldberg
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
2
|
Peng M, Yang L, Liao J, Le X, Dai F, Sun R, Wu F, Jiang Y, Tian R, Shao B, Zhou L, Wu M, Guo S, Xiang T. The novel DNA methylation marker FIBIN suppresses non-small cell lung cancer metastasis by negatively regulating ANXA2. Cell Signal 2024; 120:111197. [PMID: 38697447 DOI: 10.1016/j.cellsig.2024.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES The clinical T1 stage solid lung cancer with metastasis is a serious threat to human life and health. In this study, we performed RNA sequencing on T1 advanced-stage lung cancer and adjacent tissues to identify a novel biomarker and explore its roles in lung cancer. METHODS Quantitative reversed-transcription PCR, reverse transcription PCR and Western blot, MSP and Methtarget were utilized to evaluate FIBIN expression levels at both the transcriptional and protein levels as well as its methylation status. Differential target protein was evaluated for relative and absolute quantitation by isobaric tags. Co-IP was performed to detect the interactions between target protein. Precise location and expression levels of target proteins were revealed by immunofluorescence staining and component protein extraction using specific kits, respectively. RESULTS We reported that FIBIN was frequently silenced due to promoter hypermethylation in lung cancer. Additionally, both in vitro and in vivo experiments confirmed the significant anti-proliferation and anti-metastasis capabilities of FIBIN. Mechanistically, FIBIN decreased the nuclear accumulation of β-catenin by reducing the binding activity of GSK3β with ANXA2 while promoting interaction between GSK3β and β-catenin. CONCLUSION Our findings firstly identify FIBIN is a tumor suppressor, frequently silenced due to promoter hypermethylation. FIBIN may serve as a predictive biomarker for progression or metastasis among early-stage lung cancer patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- DNA Methylation
- Annexin A2/metabolism
- Annexin A2/genetics
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Cell Line, Tumor
- Cell Proliferation
- beta Catenin/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Mice, Nude
- Neoplasm Metastasis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Male
- Promoter Regions, Genetic/genetics
- Female
- Mice, Inbred BALB C
- A549 Cells
- Cell Movement
Collapse
Affiliation(s)
- Mingyu Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Le
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fengsheng Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Sun
- Department of Oncology, Jiulongpo People's Hospital, Chongqing 400050, China
| | - Fan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Tian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Tingxiu Xiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
3
|
Fujimori H, Shima‐Nakamura M, Kanno S, Shibuya‐Takahashi R, Mochizuki M, Mizuma M, Unno M, Wakui Y, Abue M, Iwai W, Fukushi D, Satoh K, Yamaguchi K, Shindo N, Yasuda J, Tamai K. FAXC interacts with ANXA2 and SRC in mitochondria and promotes tumorigenesis in cholangiocarcinoma. Cancer Sci 2024; 115:1896-1909. [PMID: 38480477 PMCID: PMC11145136 DOI: 10.1111/cas.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 06/04/2024] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.
Collapse
Affiliation(s)
- Haruna Fujimori
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Mao Shima‐Nakamura
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Shin‐Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | | | - Mai Mochizuki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Masamichi Mizuma
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yuta Wakui
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Makoto Abue
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Wataru Iwai
- Department of GastroenterologyMiyagi Cancer CenterNatoriJapan
| | - Daisuke Fukushi
- Division of GastroenterologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Kennich Satoh
- Division of GastroenterologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Norihisa Shindo
- Cancer Chromosome Biology UnitMiyagi Cancer Center Research InstituteNatoriJapan
| | - Jun Yasuda
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| |
Collapse
|
4
|
Gottumukkala SB, Ganesan TS, Palanisamy A. Comprehensive molecular interaction map of TGFβ induced epithelial to mesenchymal transition in breast cancer. NPJ Syst Biol Appl 2024; 10:53. [PMID: 38760412 PMCID: PMC11101644 DOI: 10.1038/s41540-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-β (TGFβ)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFβ induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFβ induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFβ induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.
Collapse
Affiliation(s)
| | - Trivadi Sundaram Ganesan
- Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India.
| |
Collapse
|
5
|
Ling X, Qi C, Cao K, Lu M, Yang Y, Zhang J, Zhang L, Zhu J, Ma J. METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov 2024; 10:203. [PMID: 38688909 PMCID: PMC11061277 DOI: 10.1038/s41420-024-01965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
We previously reported lncRNA HAR1A as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the delicate working mechanisms of this lncRNA remain obscure. Herein, we demonstrated that the ectopic expression of HAR1A inhibited the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of NSCLC cells and enhanced paclitaxel (PTX) sensitivity in vitro and in vivo. We identified the oncogenic protein annexin 2 (ANXA2) as a potential interacting patterner of HAR1A. HAR1A overexpression enhanced ANXA2 ubiquitination and accelerated its degradation via the ubiquitin-proteasome pathway. We further uncovered that HAR1A promoted the interaction between E3 ubiquitin ligase TRIM65 and ANXA2. Moreover, the ANXA2 plasmid transfection could reverse HAR1A overexpression-induced decreases in proliferation, migration, and invasion of NSCLC cells and the activity of the NF-κB signaling pathway. Finally, we found that HAR1A loss in NSCLC might be attributed to the upregulated METTL3. The m6A modification levels of HAR1A were increased in cancer cells, while YTHDF2 was responsible for recognizing m6A modification in the HAR1A, leading to the disintegration of this lncRNA. In conclusion, we found that METTL3-mediated m6A modification decreased HAR1A in NSCLC. HAR1A deficiency, in turn, stimulated tumor growth and metastasis by activating the ANXA2/p65 axis.
Collapse
Affiliation(s)
- Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Cuicui Qi
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Mengdi Lu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Yingnan Yang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinfeng Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
- Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Qiu Y, Pei D, Wang M, Wang Q, Duan W, Wang L, Liu K, Guo Y, Luo L, Guo Z, Guan F, Wang Z, Xing A, Liu Z, Ma Z, Jiang G, Yan D, Liu X, Zhang Z, Wang W. Nuclear autoantigenic sperm protein facilitates glioblastoma progression and radioresistance by regulating the ANXA2/STAT3 axis. CNS Neurosci Ther 2024; 30:e14709. [PMID: 38605477 PMCID: PMC11009454 DOI: 10.1111/cns.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
AIMS Although radiotherapy is a core treatment modality for various human cancers, including glioblastoma multiforme (GBM), its clinical effects are often limited by radioresistance. The specific molecular mechanisms underlying radioresistance are largely unknown, and the reduction of radioresistance is an unresolved challenge in GBM research. METHODS We analyzed and verified the expression of nuclear autoantigenic sperm protein (NASP) in gliomas and its relationship with patient prognosis. We also explored the function of NASP in GBM cell lines. We performed further mechanistic experiments to investigate the mechanisms by which NASP facilitates GBM progression and radioresistance. An intracranial mouse model was used to verify the effectiveness of combination therapy. RESULTS NASP was highly expressed in gliomas, and its expression was negatively correlated with the prognosis of glioma. Functionally, NASP facilitated GBM cell proliferation, migration, invasion, and radioresistance. Mechanistically, NASP interacted directly with annexin A2 (ANXA2) and promoted its nuclear localization, which may have been mediated by phospho-annexin A2 (Tyr23). The NASP/ANXA2 axis was involved in DNA damage repair after radiotherapy, which explains the radioresistance of GBM cells that highly express NASP. NASP overexpression significantly activated the signal transducer and activator of transcription 3 (STAT3) signaling pathway. The combination of WP1066 (a STAT3 pathway inhibitor) and radiotherapy significantly inhibited GBM growth in vitro and in vivo. CONCLUSION Our findings indicate that NASP may serve as a potential biomarker of GBM radioresistance and has important implications for improving clinical radiotherapy.
Collapse
Affiliation(s)
- Yuning Qiu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Dongling Pei
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Minkai Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Qimeng Wang
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wenchao Duan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Li Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Kehan Liu
- Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yu Guo
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lin Luo
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhixuan Guo
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Fangzhan Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zilong Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Aoqi Xing
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhongyi Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zeyu Ma
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhong Jiang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Dongming Yan
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xianzhi Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Weiwei Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
7
|
Xiao S, Ouyang Q, Feng Y, Lu X, Han Y, Ren H, Huang Q, Zhao J, Xiao C, Yang M. LncNFYB promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via LncNFYB/ANXA2/ERK1/2 axis. J Biol Chem 2024; 300:105591. [PMID: 38141769 PMCID: PMC10867587 DOI: 10.1016/j.jbc.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.
Collapse
Affiliation(s)
- Shibai Xiao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingqing Ouyang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Lu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yipeng Han
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Ren
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjun Zhao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhong Xiao
- Department of Rheumatology and Immunology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Min Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Mahdi AF, Nolan J, O’Connor RÍ, Lowery AJ, Allardyce JM, Kiely PA, McGourty K. Collagen-I influences the post-translational regulation, binding partners and role of Annexin A2 in breast cancer progression. Front Oncol 2023; 13:1270436. [PMID: 37941562 PMCID: PMC10628465 DOI: 10.3389/fonc.2023.1270436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The extracellular matrix (ECM) has been heavily implicated in the development and progression of cancer. We have previously shown that Annexin A2 is integral in the migration and invasion of breast cancer cells and in the clinical progression of ER-negative breast cancer, processes which are highly influenced by the surrounding tumor microenvironment and ECM. Methods We investigated how modulations of the ECM may affect the role of Annexin A2 in MDA-MB-231 breast cancer cells using western blotting, immunofluorescent confocal microscopy and immuno-precipitation mass spectrometry techniques. Results We have shown that the presence of collagen-I, the main constituent of the ECM, increases the post-translational phosphorylation of Annexin A2 and subsequently causes the translocation of Annexin A2 to the extracellular surface. In the presence of collagen-I, we identified fibronectin as a novel interactor of Annexin A2, using mass spectrometry analysis. We then demonstrated that reducing Annexin A2 expression decreases the degradation of fibronectin by cancer cells and this effect on fibronectin turnover is increased according to collagen-I abundance. Discussion Our results suggest that Annexin A2's role in promoting cancer progression is mediated by collagen-I and Annexin A2 maybe a therapeutic target in the bi-directional cross-talk between cancer cells and ECM remodeling that supports metastatic cancer progression.
Collapse
Affiliation(s)
- Amira F. Mahdi
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Joanne Nolan
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ruth Í. O’Connor
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Aoife J. Lowery
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Joanna M. Allardyce
- Health Research Institute, University of Limerick, Limerick, Ireland
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Patrick A. Kiely
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Health Research Institute, University of Limerick, Limerick, Ireland
- Science Foundation Ireland Research Centre in Pharmaceuticals (SSPC), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Chen J, Su X, Tan Q, Pu H, Zhang L, Kang Y, Tang Y, Zhao X, Hou W, Qian S, Deng S, Hou L, Gao Y. Effect of cell density on the malignant biological behavior of breast cancer by altering the subcellular localization of ANXA2 and its clinical implications. Clin Transl Oncol 2022; 24:2136-2145. [PMID: 35778647 DOI: 10.1007/s12094-022-02865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the subcellular localization of ANXA2 in breast cancer of different cell densities in humans and its relationship with the clinicopathological features of patients. To investigate the differences in ANXA2 subcellular localization in MDA-MB-231 cells of different cell densities. To compare the proliferation, invasion, and migration ability of MDA-MB-231 cells under different ANXA2 subcellular localization. METHODS Immunohistochemistry was applied to detect the subcellular localization of ANXA2 in tissue sections of 60 breast cancer patients, and the association with ANXA2 subcellular localization was verified in conjunction with cell density. To investigate the relationship between cell density and clinicopathological data of breast cancer patients. To establish high- and low-density models of MDA-MB-231 breast cancer cell lines and verify the subcellular localization of ANXA2 using immunofluorescence and observation under confocal microscopy. The proliferation, migration, and invasion ability of MDA-MB-231 cells under different subcellular localization of ANXA2 were detected and compared using CCK-8 assay and Transwell assay. After changing the subcellular localization of ANXA2 in high-density MDA-MB-231 cells with PY-60, changes in biological behaviors of the compared MDA-MB-231 cells were observed. Two different 4T1 cell lines with high and low densities were implanted subcutaneously in nude mice to observe the effects of different cell densities on tumor growth in nude mice. RESULTS The clinical data showed that breast cancer with high cell density had higher T stage and higher TNM stage, and the cell density was positively correlated with breast cancer mass size. ANXA2 was mainly localized to the cell membrane when the cell density of breast cancer cells was high and to the cytoplasm when the cell density was low. The CCK-8 assay showed that the proliferation rate of MDA-MB-231 cells increased (P < 0.05) after shifting the subcellular localization of ANXA2 from the cell membrane to the cytoplasm. Transwell invasion assay and Transwell migration assay showed that the invasion and migration ability of MDA-MB-231 cells increased significantly after the subcellular localization of ANXA2 was transferred from the cell membrane to the cytoplasm (P < 0.05). The animal experiments showed that high-density breast cancer cells could promote the growth of subcutaneous tumors in nude mice relative to low-density breast cancer cells. CONCLUSION Cell density can regulate the subcellular localization of ANXA2, and changes in the subcellular localization of ANXA2 are accompanied by the changes in the biological behavior of breast cancer.
Collapse
Affiliation(s)
- Jingtai Chen
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaohan Su
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Qiao Tan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Hongyu Pu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Linxing Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yuqing Kang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yunhui Tang
- Department of Thyroid and Breast Surgery, Guang'an City People's Hospital, Guang'an, Sichuan, China
| | - Xiaobo Zhao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wei Hou
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shuangqiang Qian
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Shishan Deng
- Basic Medical College, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Lingmi Hou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Yanchun Gao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
10
|
Long Y, Chong T, Lyu X, Chen L, Luo X, Faleti OD, Deng S, Wang F, He M, Qian Z, Zhao H, Zhou W, Guo X, Chen C, Li X. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J Exp Clin Cancer Res 2022; 41:301. [PMID: 36229838 PMCID: PMC9558416 DOI: 10.1186/s13046-022-02504-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early metastasis is a key factor contributing to poor breast cancer (BC) prognosis. Circulating tumor cells (CTCs) are regarded as the precursor cells of metastasis, which are ultimately responsible for the main cause of death in BC. However, to date molecular mechanisms underlying CTC formation in BC have been insufficiently defined. METHODS RNA-seq was carried out in primary tissues from early-stage BC patients (with CTCs≥5 and CTCs = 0, respectively) and the validation study was conducted in untreated 80 BC patients. Multiple in vitro and in vivo models were used in functional studies. Luciferase reporter, ChIP-seq, CUT&Tag-seq, and GST-pulldown, etc. were utilized in mechanistic studies. CTCs were counted by the CanPatrol™ CTC classification system or LiquidBiospy™ microfluidic chips. ERK1/2 inhibitor SCH772984 was applied to in vivo treatment. RESULTS Highly expressed FOXD1 of primary BC tissues was observed to be significantly associated with increased CTCs in BC patients, particularly in early BC patients. Overexpressing FOXD1 enhanced the migration capability of BC cells, CTC formation and BC metastasis, via facilitating epithelial-mesenchymal transition of tumor cells. Mechanistically, FOXD1 was discovered to induce RalA expression by directly bound to RalA promotor. Then, RalA formed a complex with ANXA2 and Src, promoting the interaction between ANXA2 and Src, thus increasing the phosphorylation (Tyr23) of ANXA2. Inhibiting RalA-GTP form attenuated the interaction between ANXA2 and Src. This cascade culminated in the activation of ERK1/2 signal that enhanced metastatic ability of BC cells. In addition, in vivo treatment with SCH772984, a specific inhibitor of ERK1/2, was used to dramatically inhibit the CTC formation and BC metastasis. CONCLUSION Here, we report a FOXD1-dependent RalA-ANXA2-Src complex that promotes CTC formation via activating ERK1/2 signal in BC. FOXD1 may serve as a prognostic factor in evaluation of BC metastasis risks. This signaling cascade is druggable and effective for overcoming CTC formation from the early stages of BC.
Collapse
Affiliation(s)
- Yufei Long
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Tuotuo Chong
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaoming Lyu
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lujia Chen
- grid.284723.80000 0000 8877 7471Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaomin Luo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Oluwasijibomi Damola Faleti
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simin Deng
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Fei Wang
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Mingliang He
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhipeng Qian
- Guangzhou SaiCheng Bio Co. Ltd, Guangzhou, Guangdong China
| | - Hongli Zhao
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Wenyan Zhou
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Xia Guo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan China
| | - Xin Li
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
11
|
Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci 2022; 309:120996. [PMID: 36170890 DOI: 10.1016/j.lfs.2022.120996] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ramkishan Ajmeer
- Central Drugs Standard Control Organization, East Zone, Kolkata 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
12
|
Chi F, Jin X, Chen L, He G, Han S. TRG16, targeted by miR-765, inhibits breast cancer stem cell-like properties via regulating the NF-κB pathway. Mol Cell Biochem 2022; 477:2801-2816. [PMID: 35648115 DOI: 10.1007/s11010-022-04480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022]
Abstract
Previous studies reported that cancer stem cells (CSCs) might be responsible for drug resistance and cancer progression. Transformation-Related Gene 16 Protein (TRG16), a pseudokinase, was reported to be a suppressor in some types of cancer and its overexpression impaired hepatocellular carcinoma cell stemness. However, the function of TRG16 in BC remains unclear. We found that TRG16 expression was significantly downregulated in BC tissues compared with adjacent tissues (n = 40; P < 0.001) and BC patients with lower expression of TRG16 had a worse prognosis. Forced expression of TRG16 inhibited BC stem cell-like properties as evidenced by decreased CD44-positive cells (CSC marker), reduced mammosphere quantity, and downregulated Nanog, aldehyde dehydrogenase, octamer-binding transcription factor 4, and SRY-box transcription factor 2 expression (CSC markers). Moreover, TRG16 overexpression inhibited self-renewal and invasion capabilities of BC cells in vitro as well as tumor growth in vivo but increased cisplatin sensitivity. However, TRG16 silencing had the opposite effects. Further mechanistic studies revealed that TRG16 was targeted and negatively regulated by miR-765, a facilitator of BC progression. TRG16 could suppress the activation of the NF-κB pathway in BC cells, which is a positive pathway in BC progression and contributes to the maintenance of cancer cell stemness. In conclusion, the results above demonstrate that TRG16, negatively regulated by miR-765, may inhibit the BC progression by regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway. Our findings indicate that TRG16 may be a potential therapeutic targetable node for BC. TRG16, negatively regulated by miR-765, may inhibit the BC progression through regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway.
Collapse
Affiliation(s)
- Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, China
| | - Xiaoming Jin
- Department of Endocrinology, Northern Theater Air Force Hospital of the People's Liberation Army, Shenyang, Liaoning, China
| | - Long Chen
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Guijin He
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, China
| | - Sijia Han
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, Liaoning, China.
| |
Collapse
|
13
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
14
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
15
|
Zhao W, Zhang M, Wang G, Liu E, Jiang G, Zhang Y, Zhang D, Jian X, Zhao H, Zhang C, Li W. The GNAQ T96S mutation abrogates the ability of wild-type GNAQ to induce apoptosis by phosphorylating ANXA2 in natural killer/T cell lymphoma. Cancer Sci 2022; 113:2288-2296. [PMID: 35293080 PMCID: PMC9277252 DOI: 10.1111/cas.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Our previous study identified Annexin A2 (ANXA2) as a Gaq-interacting partner in natural killer/T cell lymphoma (NKTCL) cells transfected with the GNAQ T96S mutation vector by immunoprecipitation and mass spectrometry; however, the detailed molecular mechanisms by which GNAQ T96S might regulate ANXA2 remain to be defined in NKTCL. Herein, we found that the GNAQ T96S mutation significantly promotes the phosphorylation of ANXA2 at the Y24 site, whereas phosphorylation of ANXA2 abolishes the ability of wild-type GNAQ to trigger cell apoptosis. Further investigation revealed that a GNAQ T96S peptide inhibitor induced apoptosis by competing with ANXA2 binding to GNAQ T96S in NKTCL cells. In vivo animal experiments demonstrated that a GNAQ T96S peptide inhibitor suppresses the growth of NKTCL cells carrying the GNAQ T96S mutation. Our current data suggest a role for GNAQ T96S/Src/ANXA2 in mediating the apoptosis of NKTCL cells, and the GNAQ T96S peptide may be a promising agent for therapy in NKTCL patients.
Collapse
Affiliation(s)
- Wugan Zhao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Min Zhang
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Guannan Wang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Enjie Liu
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Guozhong Jiang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Yanping Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Dandan Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Xiangyu Jian
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Haiyu Zhao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Chongli Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Wencai Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| |
Collapse
|
16
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
17
|
(20S) Ginsenoside Rh2 Inhibits STAT3/VEGF Signaling by Targeting Annexin A2. Int J Mol Sci 2021; 22:ijms22179289. [PMID: 34502195 PMCID: PMC8431727 DOI: 10.3390/ijms22179289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transducers and activators of transcription 3 (STAT3) acts as a transcriptional signal transducer, converting cytokine stimulation into specific gene expression. In tumor cells, aberrant activation of the tyrosine kinase pathway leads to excessive and continuous activation of STAT3, which provides further signals for tumor cell growth and surrounding angiogenesis. In this process, the tumor-associated protein Annexin A2 interacts with STAT3 and promotes Tyr705 phosphorylation and STAT3 transcriptional activation. In this study, we found that (20S) ginsenoside Rh2 (G-Rh2), a natural compound inhibitor of Annexin A2, inhibited STAT3 activity in HepG2 cells. (20S) G-Rh2 interfered with the interaction between Annexin A2 and STAT3, and inhibited Tyr705 phosphorylation and subsequent transcriptional activity. The inhibitory activity of STAT3 leaded to the negative regulation of the four VEGFs, which significantly reduced the enhanced growth and migration ability of HUVECs in co-culture system. In addition, (20S)G-Rh2 failed to inhibit STAT3 activity in cells overexpressing (20S)G-Rh2 binding-deficient Annexin A2-K301A mutant, further proving Annexin A2-mediated inhibition of STAT3 by (20S)G-Rh2. These results indicate that (20S)G-Rh2 is a potent inhibitor of STAT3, predicting the potential activity of (20S)G-Rh2 in targeted therapy applications.
Collapse
|
18
|
Li J, Yu Z, Zhu Q, Tao C, Xu Q. hsa_circ_102559 Acts as the Sponge of miR-130a-5p to Promote Hepatocellular Carcinoma Progression Through Regulation of ANXA2. Cell Transplant 2021; 29:963689720968748. [PMID: 33121269 PMCID: PMC7784593 DOI: 10.1177/0963689720968748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are critical regulators in tumor initiation and development and participate in the pathological process of hepatocellular carcinoma (HCC). However, the specific role and mechanism of circRNA, hsa_circ_102559, in HCC remains elusive. First, analysis of HCC-related circRNA expression profile GSE97332 and HCC patients showed a significant upregulation of hsa_circ_102559 in HCC tissues. Upregulation of hsa_circ_102559 in HCC cells was associated with the metastatic properties. Second, hsa_circ_102559 significantly promoted HCC metastasis, while knockdown of hsa_circ_102559 reversed the promotive effects on HCC progression. Functionally, hsa_circ_102559 could target and colocalize with miR-130a-5p in the cytoplasm of HCC cells. Annexin A2 (ANXA2) was identified as a target gene of miR-130a-5p, and overexpression of ANXA2 counteracted with the suppressive effects of hsa_circ_102559 silence on HCC metastasis. Lastly, xenograft experiment was established and results indicated that knockdown of hsa_circ_102559 inhibited HCC growth and metastasis through the downregulation of ANXA2. In conclusion, hsa_circ_102559 inhibited HCC progression via sponging miR-130a-5p to reduce ANXA2 expression, suggesting that hsa_circ_102559 might be a potential biomarker or therapeutic target for HCC.
Collapse
Affiliation(s)
- Junjian Li
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Zhengpin Yu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qiandong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Chonglin Tao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qigang Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
19
|
Yin D, Hu Z, Luo C, Wang X, Xin H, Sun R, Wang P, Li J, Fan J, Zhou Z, Zhou J, Zhou S. LINC01133 promotes hepatocellular carcinoma progression by sponging miR-199a-5p and activating annexin A2. Clin Transl Med 2021; 11:e409. [PMID: 34047479 PMCID: PMC8101537 DOI: 10.1002/ctm2.409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are functionally associated with cancer development and progression. Although gene copy number variation (CNV) is common in hepatocellular carcinoma (HCC), it is not known how CNV in lncRNAs affects HCC progression and recurrence. We aimed to identify a CNV-related lncRNA involved in HCC progression and recurrence and illustrate its underlying mechanisms and prognostic value. METHODS We analyzed the whole genome sequencing (WGS) data of matched cancerous and noncancerous liver samples from 49 patients with HCC to identify lncRNAs with CNV. The results were validated in another cohort of 238 paired HCC and nontumor samples by TaqMan copy number assay. We preformed Kaplan-Meier analysis and log-rank test to identify lncRNA CNV with prognostic value. We conducted loss- and gain-of-function studies to explore the biological functions of LINC01133 in vitro and in vivo. The competing endogenous RNAs (ceRNAs) mechanism was clarified by microRNA sequencing (miR-seq), quantitative real-time PCR (qRT-PCR), western blot, and dual-luciferase reporter assays. We confirmed the binding mechanism between lncRNA and protein by RNA pull-down, RNA immunoprecipitation, qRT-PCR, and western blot analyses. RESULTS Genomic copy numbers of LINC01133 were increased in HCC, which were positively related with the elevated expression of LINC01133. Increased copy number of LINC01133 predicted the poor prognosis in HCC patients. LINC01133 overexpression in HCC cells promoted proliferation and aggressive phenotypes in vitro, and facilitated tumor growth and lung metastasis in vivo, whereas LINC01133 knockdown had the opposite effects. LINC01133 sponged miR-199a-5p, resulting in enhanced expression of SNAI1, which induced epithelial-to-mesenchymal transition (EMT) in HCC cells. In addition, LINC01133 interacted with Annexin A2 (ANXA2) to activate the ANXA2/STAT3 signaling pathway. CONCLUSIONS LINC01133 promotes HCC progression by sponging miR-199a-5p and interacting with ANXA2. LINC01133 CNV gain is predictive of poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Dan Yin
- Institute of Biomedical SciencesFudan UniversityShanghaiPeople's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Zhi‐Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Chu‐Bin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Xiao‐Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Hao‐Yang Xin
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Rong‐Qi Sun
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Peng‐Cheng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Jia Fan
- Institute of Biomedical SciencesFudan UniversityShanghaiPeople's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Zheng‐Jun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Jian Zhou
- Institute of Biomedical SciencesFudan UniversityShanghaiPeople's Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| | - Shao‐Lai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University)Ministry of EducationShanghaiPeople's Republic of China
| |
Collapse
|
20
|
A novel cystathionine γ-lyase inhibitor, I194496, inhibits the growth and metastasis of human TNBC via downregulating multiple signaling pathways. Sci Rep 2021; 11:8963. [PMID: 33903672 PMCID: PMC8076300 DOI: 10.1038/s41598-021-88355-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a high-risk subtype of breast cancer with high capacity for metastasis and lacking of therapeutic targets. Our previous studies indicated that cystathionine γ-lyase (CSE) may be a new target related to the recurrence or metastasis of TNBC. Downregulation of CSE could inhibit the growth and metastasis of TNBC. The purpose of this study was to investigate the activity of the novel CSE inhibitor I194496 against TNBC in vivo and in vitro. The anticancer activity of I194496 in vitro were detected by MTS, EdU, and transwell assays. Methylene blue assay was used to determine the H2S level. Western blot was performed to analyze the expression of related pathway proteins. Xenograft tumors in nude mice were used to analyze the anticancer activity of I194496 in vivo. I194496 exerted potent inhibitory effects than l-propargylglycine (PAG, an existing CSE inhibitor) on human TNBC cells and possessed lower toxicity in normal breast epithelial Hs578Bst cells. I194496 reduced the activity and expression of CSE protein and the release of H2S in human TNBC cells. Meanwhile, the protein levels of PI3K, Akt, phospho (p)-Akt, Ras, Raf, p-ERK, p-Anxa2, STAT3, p-STAT3, VEGF, FAK, and Paxillin were decreased in human TNBC cells administrated with I194496. Furthermore, I194496 showed more stronger inhibitory effects on human TNBC xenograft tumors in nude mice. I194496 could inhibit the growth of human TNBC cells via the dual targeting PI3K/Akt and Ras/Raf/ERK pathway and suppress the metastasis of human TNBC cells via down-regulating Anxa2/STAT3 and VEGF/FAK/Paxillin signaling pathways. CSE inhibitor I194496 might become a novel and potential agent in the treatment of TNBC.
Collapse
|
21
|
Clinical significance of Annexin A2 expression in oral squamous cell carcinoma and its influence on cell proliferation, migration and invasion. Sci Rep 2021; 11:5033. [PMID: 33658625 PMCID: PMC7930260 DOI: 10.1038/s41598-021-84675-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm of the head and neck, with poorer prognosis. There is lack of specific targets for diagnosis and treatment of OSCC at present. Annexin A2 (ANXA2) is involved in cell angiogenesis, invasion, proliferation and metastasis. In this study, the significance and effect of ANXA2 on OSCC and OSCC cells were explored from the clinical and basic study. First, ANXA2 expression in OSCC tissues and adjacent non-cancer tissues of 124 patients were detected, and the correlation between ANXA2 expression and clinical parameters were analyzed. The results found that ANXA2 was highly expressed in OSCC tissues, and was associated with the TNM stage, tumor differentiation, lymph node metastasis and poor survival of OSCC patients. The expression of ANXA2 in OSCC cells were higher than the normal oral cells. And knockdown of ANXA2 by transfecting ANXA2-siRNA could suppress the proliferation, migration, and invasion abilities of OSCC cells. Overall, ANXA2 expression is correlated with poor survival of OSCC patients, and silencing of ANXA2 suppress the proliferation, migration and invasion of OSCC cells.
Collapse
|
22
|
Sharma MC, Jain D. Important role of annexin A2 (ANXA2) in new blood vessel development in vivo and human triple negative breast cancer (TNBC) growth. Exp Mol Pathol 2020; 116:104523. [PMID: 32866522 DOI: 10.1016/j.yexmp.2020.104523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022]
Abstract
Development of new blood vessels in the tumor microenvironment is an essential component of tumor progression during which newly formed blood vessels nourish tumor cells and play a critical role in rapid tumor growth, invasion and metastasis. Nevertheless, how tumor cells develop new blood vessels in the tumor microenvironment (TME) have been enigmatic. Previously, we have shown specific overexpression of ANX A2 in TNBC cells regulates plasmin generation and suspected a role in neoangiogenesis. In this report, we used Matrigel plug model of in vivo angiogenesis and confirmed its role in new blood vessel development. Next, we tested if blocking of ANX A2 in aggressive human breast TME can inhibit angiogenesis and tumor growth in vivo. We showed that aggressive human breast tumor cells growing in nude mice can induce intense neoangiogenesis in the tumor mass. Blocking of ANXA2 significantly inhibited neoangiogenesis and resulted in inhibition of tumor growth. Interestingly, we identified that blocking of ANXA2 significantly inhibited tyrosine phosphorylation (Tyr-P) of ANXA2 implying its involvement in tyrosine signaling pathway and suggesting it may regulate angiogenesis. Taken together, our experimental evidence suggests that ANX A2 could be a novel strategy for disruption of tyrosine signaling and inhibition of neoangiogenesis in breast tumor.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, United States of America; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, United States of America.
| | - Diwakar Jain
- Westchester Medical Center, NY 10595, United States of America
| |
Collapse
|
23
|
Expression of Annexin A2 Promotes Cancer Progression in Estrogen Receptor Negative Breast Cancers. Cells 2020; 9:cells9071582. [PMID: 32629869 PMCID: PMC7407301 DOI: 10.3390/cells9071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
When breast cancer progresses to a metastatic stage, survival rates decline rapidly and it is considered incurable. Thus, deciphering the critical mechanisms of metastasis is of vital importance to develop new treatment options. We hypothesize that studying the proteins that are newly synthesized during the metastatic processes of migration and invasion will greatly enhance our understanding of breast cancer progression. We conducted a mass spectrometry screen following bioorthogonal noncanonical amino acid tagging to elucidate changes in the nascent proteome that occur during epidermal growth factor stimulation in migrating and invading cells. Annexin A2 was identified in this screen and subsequent examination of breast cancer cell lines revealed that Annexin A2 is specifically upregulated in estrogen receptor negative (ER-) cell lines. Furthermore, siRNA knockdown showed that Annexin A2 expression promotes the proliferation, wound healing and directional migration of breast cancer cells. In patients, Annexin A2 expression is increased in ER- breast cancer subtypes. Additionally, high Annexin A2 expression confers a higher probability of distant metastasis specifically for ER- patients. This work establishes a pivotal role of Annexin A2 in breast cancer progression and identifies Annexin A2 as a potential therapeutic target for the more aggressive and harder to treat ER- subtype.
Collapse
|
24
|
Xiao L, Jin H, Duan W, Hou Y. Roles of N-terminal Annexin A2 phosphorylation sites and miR-206 in colonic adenocarcinoma. Life Sci 2020; 253:117740. [PMID: 32376265 DOI: 10.1016/j.lfs.2020.117740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
AIMS Annexin A2 (ANXA2) is closely associated with tumor malignancy and its N-terminus includes a vital domain for its function. The aims are to explore the correlation between the sites (Tyr23, Ser1, Ser11 and Ser25) in the domain and its roles. MAIN METHODS We re-expressed ANXA2 with mutated sites in ANXA2-deleted human colonic adenocarcinoma cell line caco2 (ANXA2-/-caco2). A series of analyses were used to determine the correlation of each site with ANXA2 activation, cell malignancy enhancement and motility-associated microstructural development. Bioinformatics and luciferase reporter assays were employed to validate ANXA2-targeted miRNAs. KEY FINDINGS The in vitro results showed that all single and multiple mutations of the ANXA2 N-terminal sites inhibited ANXA2 phosphorylation at different levels and subsequently inhibited the proliferation, motility, and polymerization of F-actin and β-tubulin in caco2 cells. Motility-associated microstructures were significantly remodeled when these sites were mutated. The forced expression of miR-206 significantly suppressed the proliferation, motility and epithelial-mesenchymal transition (EMT) of caco2 cells. The in vivo results showed that all the ANXA2 N-terminal site mutations and forced expression of miR-206 significantly inhibited tumor growth. Overall, this study demonstrated that the sites of the ANXA2 N-terminus, especially Tyr23, play crucial roles in maintaining the high malignancy of colonic adenocarcinoma. Furthermore, miR-206 targets ANXA2 and plays a role as a cancer suppressor in colonic adenocarcinoma. SIGNIFICANCE Our study provided evidence that further elucidates the molecular mechanism of ANXA2 and its roles in colonic adenocarcinoma and suggested potential targets of ANXA2 for colonic adenocarcinoma therapy by using miR-206 as a novel strategy.
Collapse
Affiliation(s)
- Li Xiao
- College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Huijuan Jin
- College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Yingchun Hou
- College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
25
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
26
|
(20S)G-Rh2 Inhibits NF-κB Regulated Epithelial-Mesenchymal Transition by Targeting Annexin A2. Biomolecules 2020; 10:biom10040528. [PMID: 32244350 PMCID: PMC7225922 DOI: 10.3390/biom10040528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Epithelial-mesenchymal transition (EMT) is an essential step for cancer metastasis; targeting EMT is an important path for cancer treatment and drug development. NF-κB, an important transcription factor, has been shown to be responsible for cancer metastasis by enhancing the EMT process. Our previous studies showed that (20S)Ginsenoside Rh2 (G-Rh2) inhibits NF-κB activity by targeting Anxa2, but it is still not known whether this targeted inhibition of NF-κB can inhibit the EMT process. (2) Methods: In vivo (20S)G-Rh2-Anxa2 interaction was assessed by cellular thermal shift assay. Protein interaction was determined by immuno-precipitation analysis. NF-κB activity was determined by dual luciferase reporter assay. Gene expression was determined by RT-PCR and immuno-blot. EMT was evaluated by wound healing and Transwell assay and EMT regulating gene expression. (3) Results: Anxa2 interacted with the NF-κB p50 subunit, promoted NF-κB activation, then accelerated mesenchymal-like gene expression and enhanced cell motility; all these cellular processes were inhibited by (20S)G-Rh2. In contrast, these (20S)G-Rh2 effect were completely eliminated by overexpression of Anxa2-K301A, an (20S)G-Rh2-binding-deficient mutant of Anxa2. (4) Conclusion: (20S)G-Rh2 inhibited NF-κB activation and related EMT by targeting Anxa2 in MDA-MB-231 cells.
Collapse
|
27
|
Jia Y, Shi H, Cao Y, Feng W, Li M, Li X. PDZ and LIM domain protein 4 suppresses the growth and invasion of ovarian cancer cells via inactivation of STAT3 signaling. Life Sci 2019; 233:116715. [DOI: 10.1016/j.lfs.2019.116715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022]
|
28
|
Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res 2019; 21:66. [PMID: 31113450 PMCID: PMC6530024 DOI: 10.1186/s13058-019-1147-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acquirement of resistance is always associated with a highly aggressive phenotype of tumor cells. Recent studies have revealed that Annexin A2 (Anxa2) is a key protein that links drug resistance and cancer metastasis. A high level of Anxa2 in cancer tissues is correlated to a highly aggressive phenotype. Increased Anxa2 expression appears to be specific in many drug-resistant cancer cells. The functional activity of Anxa2 is regulated by tyrosine phosphorylation at the Tyr23 site. Nevertheless, the accurate molecular mechanisms underlying the regulation of Anxa2 tyrosine phosphorylation and whether phosphorylation is necessary for the enhanced invasive phenotype of drug-resistant cells remain unknown. Methods Small interfering RNAs, small molecule inhibitors, overexpression, loss of function or gain of function, rescue experiments, Western blot, wound healing assays, transwell assays, and in vivo metastasis mice models were used to investigate the functional effects of Rack1 and Src on the tyrosine phosphorylation of Anxa2 and the invasion and metastatic potential of drug-resistant breast cancer cells. The interaction among Rack1, Src, and Anxa2 in drug-resistant cells was verified by co-immunoprecipitation assay. Results We demonstrated that Anxa2 Tyr23 phosphorylation is necessary for multidrug-resistant breast cancer invasion and metastasis. Rack1 is required for the invasive and metastatic potential of drug-resistant breast cancer cells through modulating Anxa2 phosphorylation. We provided evidence that Rack1 acts as a signal hub and mediates the interaction between Src and Anxa2, thereby facilitating Anxa2 phosphorylation by Src kinase. Conclusions Our findings suggest a convergence point role of Rack1/Src/Anxa2 complex in the crosstalk between drug resistance and cancer aggressiveness. The interaction between Anxa2 and Rack1/Src is responsible for the association between drug resistance and invasive/metastatic potential in breast cancer cells. Thus, our findings provide novel insights on the mechanism underlying the functional linkage between drug resistance and cancer aggressiveness. Electronic supplementary material The online version of this article (10.1186/s13058-019-1147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Fan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weiyao Si
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weijie Song
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
29
|
Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:133. [PMID: 30898167 PMCID: PMC6427903 DOI: 10.1186/s13046-019-1132-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive form of astrocytoma among adult brain tumors. Multiple studies have shown that long non-coding RNAs (lncRNAs) play important roles in acting as molecular sponge for competing with microRNAs (miRNAs) to regulate downstream molecules in tumor progression. We previously reported that miR155 host gene (miR155HG), an lncRNA, and its derivative miR-155 promote epithelial-to-mesenchymal transition in glioma. However, the other biological functions and mechanisms of miR155HG sponging miRNAs have been unknown. Considering ANXA2 has been generally accepted as oncogene overexpressed in a vast of cancers correlated with tumorigenesis, which might be the target molecule of miR155HG sponging miRNA via bioinformatics analysis. We designed this study to explore the interaction of miR155HG and ANXA2 to reveal the malignancy of them in GBM development. Methods The expression of miR155HG was analyzed in three independent databases and clinical GBM specimens. Bioinformatics analysis was performed to assess the potential tumor-related functions of miR155HG. The interaction of miR155HG and miR-185 and the inhibition of ANXA2 by miR-185 were analyzed by luciferase reporter experiments, and biological effects in GBM were explored by colony formation assays, EDU cell proliferation assays, flow cytometric analysis and intracranial GBM mouse model. Changes in protein expression were analyzed using western blot. We examined the regulatory mechanism of ANXA2 on miR155HG in GBM by gene expression profiling analysis, double immunofluorescence staining, chromatin immunoprecipitation and luciferase reporter assays. Results We found that miR155HG was upregulated in GBM tissues and cell lines. Bioinformatic analyses of three GBM databases showed that miR155HG expression levels were closely associated with genes involved in cell proliferation and apoptosis. Knocking down miR155HG suppressed GBM cell proliferation in vitro, induced a G1/S-phase cell cycle arrest, and increased apoptosis. We also found that miR155HG functions as a competing endogenous RNA for miR-185. Moreover, miR-185 directly targets and inhibits ANXA2, which exhibits oncogenic functions in GBM. We also found that ANXA2 promoted miR155HG expression via STAT3 phosphorylation. Conclusion Our results demonstrated that overexpressed miR155HG in GBM can sponge miR-185 to promote ANXA2 expression, and ANXA2 stimulates miR155HG level through phosphorylated STAT3 binding to the miR155HG promoter. We establish the miR155HG/miR185/ANXA2 loop as a mechanism that underlies the biological functions of miR155HG and ANXA2 in GBM and further suggest this loop may serve as a therapeutic target and/or prognostic biomarker for GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1132-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
30
|
Tang L, Liu JX, Zhang ZJ, Xu CZ, Zhang XN, Huang WR, Zhou DH, Wang RR, Chen XD, Xiao MB, Qu LS, Lu CH. High expression of Anxa2 and Stat3 promote progression of hepatocellular carcinoma and predict poor prognosis. Pathol Res Pract 2019; 215:152386. [PMID: 30935762 DOI: 10.1016/j.prp.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
AIM To elucidate whether the interaction between Anxa2 and Stat3 could promote the progression of hepatocellular carcinoma (HCC) and that high co-expression of Anxa2 and Stat3 could predict poor prognosis in HCC patients. METHODS We investigated Anxa2 and Stat3 expression using Western blot analysis in 4 HCC and adjacent nontumor tissues and using immunohistochemistry in 100 patients' paraffin sections. Then we assessed the expression of Stat3, Anxa2 and co-expression of Stat3 and Anxa2 with relevant clinical pathological parameters and their prognostic value in HCC patients. The recurrence and overall survival rates were estimated using the Kaplan-Meier method and compared with the log-rank test. The prognostic analysis was carried out with univariate and multivariate Cox regressions models. RESULTS The incidence of high Stat3 expression in HCC tissues (35%) was significantly higher than that in non-HCC tissues (8%) (P < 0.001). The same result was observed in Anxa2 (P < 0.001). Also, the overexpression of Stat3 or Anxa2 showed a significant relationship with the recurrence of the 100 HCC patients (P = 0.012; P = 0.003). Additionally, tumor size >3 cm in diameter, multiple tumor number, and the presence of microvascular tumor thrombus were also significantly associated with recurrence in 100 patients. Then, all enrolled patients were divided into four groups according to IHC score of Stat3 and Anxa2, and the results indicated a significant difference in recurrence time between the subgroups (P < 0.001). What's more, co-highexpression of Stat3 and Anxa2 was related to the presence of microvascular tumor thrombus (P = 0.003) and poor tumor differentiation (P < 0.001), but not relevant with other clinical features (All P > 0.05). CONCLUSION The expression of Stat3, Anxa2, or co-high-expression of the two proteins was associated with HCC recurrence and survival.
Collapse
Affiliation(s)
- Lei Tang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Jin-Xia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China
| | - Zi-Juan Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Chen-Zhou Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Xue-Ning Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Wei-Rong Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Dan-Hua Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Rong-Rong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Clinical Medicine, Medical College, Nantong University, Nantong, 226001, PR China
| | - Xu-Dong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, PR China
| | - Ming-Bing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China
| | - Li-Shuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China.
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, Jiangsu, 226001, PR China.
| |
Collapse
|
31
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
32
|
Lou Y, Yu Y, Xu X, Zhou S, Shen H, Fan T, Wu D, Yin J, Li G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J Cell Mol Med 2018; 23:1873-1884. [PMID: 30588744 PMCID: PMC6378214 DOI: 10.1111/jcmm.14088] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/10/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) play essential roles in diverse biological processes; however, current understanding of the mechanism underlying the regulation of tumour proliferation and metastasis is limited. Lung cancer‐associated transcript 1 (LUCAT1) has been reported in a variety of human cancers, while its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to determine the biological role and underlying mechanism of LUCAT1 on progression and metastasis in HCC cells and clinical specimens. Our results demonstrated that LUCAT1 was up‐regulated in HCC tissues and cells. Loss‐ and gain‐of‐function studies revealed that LUCAT1 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Furthermore, RNA pulldown and Western blot assays indicated that LUCAT1 inhibited the phosphorylation of Annexin A2 (ANXA2) to reduce the degradation of ANXA2‐S100A10 heterotetramer (AIIt), which in turn accelerated the secretion of plasminogen into plasmin, thereby resulting in the activation of metalloprotease proteins. In conclusion, we propose that LUCAT1 serves as a novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yun Lou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Yue Yu
- Key Laboratory of Living Donor Transplantation of Ministry of Public Health, Nanjing, Jiangsu province, China
| | - Xiaolia Xu
- Medical School of Southeast University, Nanjing, Jiangsu province, P.R. China
| | - Shu Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Haiyuan Shen
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Tianlong Fan
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Di Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu province, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
33
|
Wang Y, Cheng YS, Yin XQ, Yu G, Jia BL. Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway. Am J Physiol Cell Physiol 2018; 316:C223-C234. [PMID: 30462534 DOI: 10.1152/ajpcell.00242.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin resistance (IR) continues to pose a major threat to public health due to its role in the pathogenesis of metabolic syndrome and its ever-increasing prevalence on a global scale. The aim of the current study was to investigate the efficacy of Anxa2 in obesity-induced IR through the mediation of the NF-κB signaling pathway. Microarray analysis was performed to screen differentially expressed genes associated with obesity. To verify whether Anxa2 was differentially expressed in IR triggered by obesity, IR mouse models were established in connection with a high-fat diet (HFD). In the mouse IR model, the role of differentially expressed Anxa2 in glycometabolism and IR was subsequently detected. To investigate the effect of Anxa2 on IR and its correlation with inflammation, a palmitic acid (PA)-induced IR cell model was established, with the relationship between Anxa2 and the NF-κB signaling pathway investigated accordingly. Anxa2 was determined to be highly expressed in IR. Silencing Anxa2 was shown to inhibit IR triggered by obesity. When Anxa2 was knocked down, elevated expression of phosphorylated insulin receptor substrate 1 (IRS1), IRS1 and peroxisome proliferator-activated receptor coactivator-1a, and glucose tolerance and insulin sensitivity along with 2-deoxy-d-glucose uptake was detected, whereas decreased expression of suppressor of cytokine signaling 3, IL-6, IL-1β, TNF-α, and p50 was observed. Taken together, the current study ultimately demonstrated that Anxa2 may be a novel drug strategy for IR disruption, indicating that Anxa2 gene silencing is capable of alleviating PA or HFD-induced IR and inflammation through its negative regulatory role in the process of p50 nuclear translocation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Yun-Sheng Cheng
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Xiao-Qiang Yin
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Gang Yu
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Ben-Li Jia
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
34
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
35
|
Jeong G, Bae H, Jeong D, Ham J, Park S, Kim HW, Kang HS, Kim SJ. A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Sci Rep 2018; 8:12922. [PMID: 30150751 PMCID: PMC6110865 DOI: 10.1038/s41598-018-31306-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
In our previous study, the Kelch domain-containing 7B (KLHDC7B) was revealed to be hypermethylated at the promoter but upregulated in breast cancer. In this study, we identified a long non-coding RNA, ST8SIA6-AS1 (STAR1), whose expression was significantly associated with KLHDC7B in breast cancer (R2 = 0.3466, P < 0.01). Involvement of the two genes in tumorigenesis was examined via monitoring their effect on cellular as well as molecular events after each gene dysregulation in cultured mammary cell lines. Apoptosis of MCF-7 decreased by 49.5% and increased by 33.1%, while proliferation noted increase and decrease by up- and downregulation of KLHDC7B, respectively, suggesting its oncogenic property. STAR1, however, suppressed cell migration and increased apoptosis. Network analysis identified many target genes that appeared to have similar regulation, especially in relation to the interferon signaling pathway. Concordantly, expression of genes such as IFITs, STATs, and IL-29 in that pathway was affected by KLHDC7B and STAR1. Taken together, KLHDC7B and STAR1 are both overexpressed in breast cancer and significantly associated with gene modulation activity in the interferon signaling pathway during breast tumorigenesis.
Collapse
Affiliation(s)
- Gookjoo Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
- PanGen Biotech Inc, Suwon, 16675, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
36
|
Ma S, Lu CC, Yang LY, Wang JJ, Wang BS, Cai HQ, Hao JJ, Xu X, Cai Y, Zhang Y, Wang MR. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:183. [PMID: 30081903 PMCID: PMC6091180 DOI: 10.1186/s13046-018-0851-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND ANXA2 (Annexin A2) is a pleiotropic calcium-dependent phospholipid binding protein that is abnormally expressed in various cancers. We previously found that ANXA2 is upregulated in esophageal squamous cell carcinoma (ESCC). This study was designed to investigate the functional significance of ANXA2 dysregulation and underlying mechanism in ESCC. METHODS Proliferation, migration, invasion and metastasis assay were performed to examine the functional roles of ANXA2 in ESCC cells in vitro and in vivo. Real-time RT-PCR, immunoblotting, ChIP, reporter assay, confocal-immunofluorescence staining, co-immunoprecipitation and ubiquitination assay were used to explore the molecular mechanism underlying the actions of deregulated ANXA2 in ESCC cells. RESULTS Overexpression of ANXA2 promoted ESCC cells migration and invasion in vitro and metastasis in vivo through activation of the MYC-HIF1A-VEGF cascade. Notably, ANXA2 phosphorylation at Tyr23 by SRC led to its translocation into the nucleus and enhanced the metastatic potential of ESCC cells. Phosphorylated ANXA2 (Tyr23) interacted with MYC and inhibited ubiquitin-dependent proteasomal degradation of MYC protein. Accumulated MYC directly potentiated HIF1A transcription and then activated VEGF expression. Correlation between these molecules were also found in ESCC tissues. Moreover, dasatinib in combination with bevacizumab or ANXA2-siRNA produced potent inhibitory effects on the growth of ESCC xenograft tumors in vivo. CONCLUSIONS This study provides evidence that highly expressed p-ANXA2 (Tyr23) contributes to ESCC progression by promoting migration, invasion and metastasis, and suggests that targeting the SRC-ANXA2-MYC-HIF1A-MYC axis may be an efficient strategy for ESCC treatment.
Collapse
Affiliation(s)
- Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Chen-Chen Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.,Basic Medical College, Bengbu Medical College, Bengbu, 233003, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Juan-Juan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bo-Shi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
37
|
Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-ß induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep 2018; 8:11285. [PMID: 30050103 PMCID: PMC6062537 DOI: 10.1038/s41598-018-29703-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Annexin A2 (ANXA2) is upregulated in several malignancies, including colorectal cancer (CRC). However, there is little knowledge on the molecular mechanisms involved to its upregulation. The aim of this study was to identify the mechanism through which ANXA2 overexpression leads to CRC progression and evaluate its potential prognostic value. We used human CRC samples to analyse the correlation between ANXA2 levels and tumour staging. ANXA2 expression was increased in CRC tissues compared to normal colon tissues. In addition, we observe increased ANXA2 levels in stage IV tumours and metastasis, when compared to stage I-III. Whereas E-cadherin, an epithelial marker, decreased in stage II-IV and increased in metastasis. We’ve also shown that TGF-β, a classic EMT inductor, caused upregulation of ANXA2, and internalization of both E-cadherin and ANXA2 in CRC cells. ANXA2 silencing hindered TGF-β-induced invasiveness, and inhibitors of the Src/ANXA2/STAT3 pathway reversed the EMT. In silico analysis confirmed overexpression of ANXA2 and association to the consensus moleculars subtypes (CMS) with the worst prognosis. Therefore, ANXA2 overexpression play a pivotal role in CRC invasiveness through Src/ANXA2/STAT3 pathway activation. The association of ANXA2 to distinct CMSs suggests the possible use of ANXA2 as a prognostic marker or directed target therapy.
Collapse
|
38
|
Chen W, Wang H, Cheng M, Ni L, Zou L, Yang Q, Cai X, Jiao B. Isoharringtonine inhibits breast cancer stem-like properties and STAT3 signaling. Biomed Pharmacother 2018; 103:435-442. [PMID: 29679903 DOI: 10.1016/j.biopha.2018.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Breast cancer stem cells (BCSCs) contribute to breast cancer progression, relapse, and treatment resistance. Identification of the natural inhibitory components of BCSCs is therefore critical for clinical treatment. Here, we investigated whether isoharringtonine (IHT) had inhibitory effects on BCSCs in breast cancer cell lines. METHODS HCC1806, HCC1937, and MCF7 cells were treated with IHT. The proliferation and the migration of cells were detected by MTS assay and wound healing migration assay, respectively. The proportions of BCSCs were determined by flow cytometry and tumor sphere formation assay. Using real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting, the expression of Nanog and activation of STAT3 were detected, respectively. RESULTS Results showed that IHT inhibited the proliferation of HCC1806, HCC1937, and MCF-7 cells, and suppressed the migration of HCC1806 and HCC1937 cells in a dose-dependent manner. IHT treatment decreased the proportion of BCSCs in MCF-7, HCC1806, and HCC1937 cells. In addition, the mRNA level of Nanong was significantly downregulated after IHT treatment. We also found an inhibitory effect of IHT on STAT3 activation. CONCLUSION IHT inhibited the proliferation, migration, and BCSC proportion of breast cancer cell lines via inhibition of the STAT3/Nanong pathway.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Physical Science and Information Technology, Anhui University, 230601, China; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Mei Cheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, China
| | - Ling Ni
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li Zou
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qin Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xianghai Cai
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Baowei Jiao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
39
|
Zhou B, Hong Z, Zheng H, Chen M, Shi L, Zhao C, Qian H. Pectolinarigenin Suppresses Pancreatic Cancer Cell Growth by Inhibiting STAT3 Signaling. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is among the leading causes of cancer-related deaths with extremely poor prognosis. Thus, novel and effective therapies need to be developed to improve the poor survival rates of patients with advanced pancreatic cancer. Pectolinarigenin, a flavonoids compound, has been shown to possess numerous biologic activities such as anti-inflammation and anti-cancer. However, the function and mechanism of pectolinarigenin in pancreatic cancer are still not well understood. We evaluated the antitumor effects of pectolinarigenin, an active component of a medicinal plant. Pectolinarigenin exerted a strong antitumor effect in pancreatic cancer cell lines. Colony formation assay and wound healing assay indicated that pectolinarigenin inhibited cell viability and cell migration. Treatment with pectolinarigenin induced apoptosis and decreased phosphorylation of STAT3. Pectolinarigenin modulates the STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. This result verifies the potential use of pectolinarigenin as a new therapeutic agent for the treatment pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University Medical College, Suzhou, Jiangsu 215006, China
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong Hong
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Min Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingyi Shi
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Pinghu, Zhejiang 314200, China
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University Medical College, Suzhou, Jiangsu 215006, China
| |
Collapse
|