1
|
Tang M, Rong Y, Li X, Pan H, Tao P, Wu Z, Liu S, Tang R, Liu Z, Cai H. Anoikis-related genes in breast cancer patients: reliable biomarker of prognosis. BMC Cancer 2024; 24:1163. [PMID: 39300389 DOI: 10.1186/s12885-024-12830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women, and its progression is closely related to the phenomenon of anoikis. Anoikis, the specific programmed death resulting from a lack of contact between cells and the extracellular matrix, has recently been recognized as playing a critical role in tumor initiation, maintenance, and treatment. The ability of cancer cells to resist anoikis leads to cancer progression and metastatic colonization. However, the impact of anoikis on the prognosis of BC patients remains unclear. METHOD This study utilized data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect transcriptome and clinical data of BC patients. Anoikis-related genes (ARGs) were classified into subtypes A and B through consensus clustering. Subsequently, survival prognosis analysis, immune cell infiltration analysis, and functional enrichment analysis were performed for both subtypes. Using the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, a set of 10 ARGs related to prognosis was identified. Immune cell infiltration and tumor microenvironment analyses were conducted on these 10 ARGs to develop a prognostic model. Furthermore, single-cell data analysis and real-time polymerase chain reaction (RT-PCR) analysis were employed to study the expression of the 10 identified prognostic ARGs in BC cells. RESULTS One hundred thirty-five ARGs were identified as differentially expressed genes in the TCGA and GEO databases, with 42 of them associated with the survival prognosis of BC patients. Analyses involving Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP) revealed distinct expression patterns of ARGs between types A and B. Patients in type A exhibited worse survival prognosis and lower immune cell infiltration compared to type B. Subsequent analyses identified 10 key ARGs (YAP1, PIK3R1, BAK1, PHLDA2, EDA2R, LAMB3, CD24, SLC2A1, CDC25C, and SLC39A6) relevant to BC prognosis. Kaplan-Meier analysis indicated that high-risk patients based on these ARGs had a poorer BC prognosis. Additionally, Cox regression analysis established gender, age, T (tumor), N (nodes), and risk score as predictive factors in a nomogram model for BC. The model demonstrated diagnostic value for BC patients at 1, 3, and 5 years. Decision curve analysis (DCA) verified the risk score as a reliable predictor of BC patient survival rates. Moreover, RT-PCR results confirmed differential expressions of YAP1, PIK3R1, BAK1, PHLDA2, CD24, SLC2A1, and CDC25C in BC cells, with SLC39A6, EDA2R, and LAMB3 showing low expression levels. CONCLUSION ARGs markers can be used as BC biomarkers for risk stratification and survival prediction in BC patients. Besides, ARGs can be used as stratification factors for individualized and precise treatment of BC patients.
Collapse
Affiliation(s)
- Mingzheng Tang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaofeng Li
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Haibang Pan
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Pengxian Tao
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Zhihang Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Renmei Tang
- Qionghai People's Hospital Breast and Thyroid Surgery, Qionghai, China.
| | - Zhilong Liu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China.
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China.
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Cobleigh MA, Layng KV, Mauer E, Mahon B, Hockenberry AJ, Abukhdeir AM. Comparative genomic analysis of PIK3R1-mutated and wild-type breast cancers. Breast Cancer Res Treat 2024; 204:407-414. [PMID: 38153569 DOI: 10.1007/s10549-023-07196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.
Collapse
Affiliation(s)
- Melody A Cobleigh
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA.
| | | | | | - Brett Mahon
- Tempus Labs Inc, 600 W Chicago, Chicago, IL, 60654, USA
| | | | - Abde M Abukhdeir
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
4
|
Jang B, Yoon D, Lee JY, Kim J, Hong J, Koo H, Sa JK. Integrative multi-omics characterization reveals sex differences in glioblastoma. Biol Sex Differ 2024; 15:23. [PMID: 38491408 PMCID: PMC10943869 DOI: 10.1186/s13293-024-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with limited treatment modalities and poor prognosis. Recent studies have highlighted the importance of considering sex differences in cancer incidence, prognosis, molecular disparities, and treatment outcomes across various tumor types, including colorectal adenocarcinoma, lung adenocarcinoma, and GBM. METHODS We performed comprehensive analyses of large-scale multi-omics data (genomic, transcriptomic, and proteomic data) from TCGA, GLASS, and CPTAC to investigate the genetic and molecular determinants that contribute to the unique clinical properties of male and female GBM patients. RESULTS Our results revealed several key differences, including enrichments of MGMT promoter methylation, which correlated with increased overall and post-recurrence survival and improved response to chemotherapy in female patients. Moreover, female GBM exhibited a higher degree of genomic instability, including aneuploidy and tumor mutational burden. Integrative proteomic and phosphor-proteomic characterization uncovered sex-specific protein abundance and phosphorylation activities, including EGFR activation in males and SPP1 hyperphosphorylation in female patients. Lastly, the identified sex-specific biomarkers demonstrated prognostic significance, suggesting their potential as therapeutic targets. CONCLUSIONS Collectively, our study provides unprecedented insights into the fundamental modulators of tumor progression and clinical outcomes between male and female GBM patients and facilitates sex-specific treatment interventions. Highlights Female GBM patients were characterized by increased MGMT promoter methylation and favorable clinical outcomes compared to male patients. Female GBMs exhibited higher levels of genomic instability, including aneuploidy and TMB. Each sex-specific GBM is characterized by unique pathway dysregulations and molecular subtypes. EGFR activation is prevalent in male patients, while female patients are marked by SPP1 hyperphosphorylation.
Collapse
Affiliation(s)
- Byunghyun Jang
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dayoung Yoon
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Harim Koo
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
- Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Fang Y, Zhang Q, Chen C, Chen Z, Zheng R, She C, Zhang R, Wu J. Identification and comprehensive analysis of epithelial-mesenchymal transition related target genes of miR-222-3p in breast cancer. Front Oncol 2023; 13:1189635. [PMID: 37546414 PMCID: PMC10400091 DOI: 10.3389/fonc.2023.1189635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a crucial mechanism that microRNA-222-3p (miR-222-3p) promotes breast cancer (BC) progression. Our study aimed to identify EMT-associated target genes (ETGs) of miR-222-3p for further analysis of their roles in BC based on bioinformatics tools. Methods Based on bioinformatics analysis, we identified 10 core ETGs of miR-222-3p. Then, we performed a comprehensive analysis of 10 ETGs and miR-222-3p, including pathway enrichment analysis of ETGs, differential expression, clinical significance, correlation with immune cell infiltration, immune checkpoint genes (ICGs) expression, tumor mutational burden (TMB), microsatellite instability (MSI), stemness, drug sensitivity, and genetic alteration. Results The expression of miR222-3p in basal-like BC was significantly higher than in other subtypes of BC and the normal adjacent tissue. Pathway analysis suggested that the ETGs might regulate the EMT process via the PI3K-Akt and HIF-1 signaling pathway. Six of the 10 core ETGs of miR-222-3p identified were down-expressed in BC, which were EGFR, IL6, NRP1, NTRK2, LAMC2, and PIK3R1, and SERPINE1, MUC1, MMP11, and BIRC5 were up-expressed in BC, which also showed potential diagnostic values in BC. Prognosis analysis revealed that higher NTRK2 and PIK3R1 expressions were related to a better prognosis, and higher BIRC5 and miR-222-3p expressions were related to a worse prognosis. Most ETGs and miR-222-3p were positively correlated with various infiltration of various immune cells and ICGs expression. Lower TMB scores were correlated with higher expression of MUC1 and NTRK2, and higher BIRC5 was related to a higher TMB score. Lower expression of MUC1, NTRK2, and PIK3R1 were associated with higher MSI scores. Higher expression of ETGs was associated with lower mRNAsi scores, except BIRC5 and miR-222-3p conversely. Most ETGs and miR-222-3p expression were negatively correlated with the drug IC50 values. The analysis of the genetic alteration of the ETGs suggested that amplification was the main genetic alteration of eight ETGs except for NTRK2 and PIK3R1. Conclusion MiR-222-3p might be a specific biomarker of basal-like BC. We successfully identify 10 core ETGs of miR-222-3p, some might be useful diagnostic and prognostic biomarkers. The comprehensive analysis of 10 ETGs and miR-222-3p indicated that they might be involved in the development of BC, which might be novel therapeutic targets for the treatment of BC.
Collapse
Affiliation(s)
- Yutong Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qunchen Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chunfa Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zexiao Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongji Zheng
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chuanghong She
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rendong Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- The Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Boccarelli A, Del Buono N, Esposito F. Cluster of resistance-inducing genes in MCF-7 cells by estrogen, insulin, methotrexate and tamoxifen extracted via NMF. Pathol Res Pract 2023; 242:154347. [PMID: 36738509 DOI: 10.1016/j.prp.2023.154347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Breast cancer has become a leading cause of death for women as the economy has grown and the number of women in the labor force has increased. Several biomarkers with diagnostic, prognostic, and therapeutic implications for breast cancer have been identified in studies, leading to therapeutic advances. Resistance, on the other hand, is one of clinical practice's limitations. In this paper, we use Nonnegative Matrix Factorization to automatically extract two gene signatures from gene expression profiles of wild-type and resistance MCF-7 cells, which were then investigated further using pathways analysis and proved useful in relating resistance pathways to breast cancer regardless of the stimulus that caused it. A few extracted genes (including MAOA, IL4I1, RRM2, DUT, NME4, and SUMO3) represent new elements in the functional network for resistance in MCF-7 ER+ breast cancer. As a result of this research, a better understanding of how resistance occurs or the pathways that contribute to it may allow more effective therapies to be developed.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
8
|
Georgescu MM, Whipple SG, Notarianni CM. Novel neoplasms associated with syndromic pediatric medulloblastoma: integrated pathway delineation for personalized therapy. Cell Commun Signal 2022; 20:123. [PMID: 35978432 PMCID: PMC9382778 DOI: 10.1186/s12964-022-00930-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma is the most common pediatric embryonal brain tumor, and may occur in cancer predisposition syndromes. We describe novel associations of medulloblastoma with atypical prolactinoma and dural high-grade sarcoma in Li-Fraumeni syndrome (LFS), and epidural desmoid fibromatosis in familial adenomatous polyposis (FAP)/Turcot syndrome. Genomic analysis showing XRCC3 alterations suggested radiotherapy as contributing factor to the progression of LFS-associated medulloblastoma, and demonstrated different mechanisms of APC inactivation in the FAP-associated tumors. The integrated genomic-transcriptomic analysis uncovered the growth pathways driving tumorigenesis, including the prolactin-prolactin receptor (PRLR) autocrine loop and Shh pathway in the LFS-associated prolactinoma and medulloblastoma, respectively, the Wnt pathway in both FAP-associated neoplasms, and the TGFβ and Hippo pathways in the soft tissue tumors, regardless of germline predisposition. In addition, the comparative analysis of paired syndromic neoplasms revealed several growth pathways susceptible to therapeutic intervention by PARP, PRLR, and selective receptor tyrosine kinase (RTK) inhibitors. These could target the defective DNA damage repair in the LFS-associated medulloblastoma, the prolactin autocrine loop in the atypical prolactinoma, the EPHA3/7 and ALK overexpression in the FAP-associated medulloblastoma, and the multi-RTK upregulation in the soft tissue neoplasms. This study presents the spatiotemporal evolution of novel neoplastic associations in syndromic medulloblastoma, and discusses the post-radiotherapy risk for secondary malignancies in syndromic pediatric patients, with important implications for the biology, diagnosis, and therapy of these tumors. Video Abstract.
Collapse
Affiliation(s)
| | - Stephen G Whipple
- Department of Neurosurgery, Louisiana State University Shreveport, Shreveport, LA, 71103, USA
| | - Christina M Notarianni
- Department of Neurosurgery, Louisiana State University Shreveport, Shreveport, LA, 71103, USA
| |
Collapse
|
9
|
Ibadurrahman W, Hanif N, Hermawan A. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. J Genet Eng Biotechnol 2022; 20:66. [PMID: 35482141 PMCID: PMC9050990 DOI: 10.1186/s43141-022-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
Background Tamoxifen resistance in estrogen receptor positive (ER+) breast cancer therapy increases, which is the leading cause of cancer treatment failure, as it can impair patients’ prognoses, cause cancer recurrence, metastasis, and death. Combination therapy with compounds is needed to overcome tamoxifen resistance. Oleanolic acid (OA) was known to increase tamoxifen sensitivity in tamoxifen-resistant breast cancer; however, the molecular mechanism of OA and its involvement in overcoming tamoxifen resistance remain unknown and need further investigation. This study was conducted to identify the potential gene targets and molecular mechanisms of OA in overcoming tamoxifen resistance. Results A bioinformatic approach for functional network analysis was used in silico by utilizing secondary data in the Gene Expression Omnibus (GEO) database and analyzing them with GEO2R to obtain data on differentially expressed genes (DEGs). The DEG data were further examined with Database for Annotation, Visualization, and Integrated Discovery (DAVID), STRING, cBioPortal website, and Cytoscape with its plugin CytoHubba. Molecular docking was performed to predict the binding properties of OA on the protein encoded by the potential gene. CD44, FGFR2, PIK3R1, and MDM2 were designated as potential target genes (PTGs), and PIK3R1 was suspected as the potential gene for OA to overcome tamoxifen resistance. Molecular docking confirms that OA can inhibit p85 activation. PIK3R1 is suggested to be the potential gene for OA in overcoming tamoxifen resistance in breast cancer therapy. Conclusion The predicted molecular mechanism of OA in overcoming tamoxifen resistance involves inhibiting p85 activation, leading to the inhibition of the downstream activity of the PI3K signaling pathway, causing breast cancer to respond to tamoxifen therapy once again. Results of this study need to be validated by further studies, including in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00341-4.
Collapse
Affiliation(s)
- Wilfan Ibadurrahman
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia. .,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
10
|
|
11
|
Hu L, Zhou Y, Yang J, Zhao X, Mao L, Zheng W, Zhao J, Guo M, Chen C, He Z, Xu L. MicroRNA-7 overexpression positively regulates the CD8 + SP cell development via targeting PIK3R1. Exp Cell Res 2021; 407:112824. [PMID: 34516985 DOI: 10.1016/j.yexcr.2021.112824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022]
Abstract
microRNA-7 (miR-7), a distinct miRNA family member, has been reported to be involved in the biological functions of immune cells. However, the potential role of miR-7 in the CD8+ T cell development remains to be elucidated. In this study, we estimated the potential effects of miR-7 overexpression in the thymic CD8+ SP cell development using miR-7 overexpression mice. Our results showed that compared with those in control wild type (WT) mice, the volume, weight and total cell numbers of thymus in miR-7 overexpression (OE) mice increased significantly. The absolute cell number of CD8+ SP cells in miR-7 OE mice increased and its ability of activation and proliferation enhanced. Futhermore, we clarified that miR-7 overexpression had an intrinsic promote role in CD8+ SP cell development by adoptive cell transfer assay. Mechanistically, the expression level of PIK3R1, a target of miR-7, decreased significantly in CD8+ SP cells of miR-7 OE mice. Moreover, the expression level of phosphorylated (p)-AKT and p-ERK changed inversely and indicating that miR-7 overexpression impaired the balance of AKE and ERK pathways. In summary, our work reveals an essential role of miR-7 in promoting CD8+ SP cell development through the regulation of PIK3R1 and balance of AKT and ERK pathways.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Wen Zheng
- Department of Laboratory Medicine, Qiannan Medical University for Nationalities, Guizhou 558000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Zhixu He
- Department of Paediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guizhou, 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
12
|
Huang CS, Liu CY, Lu TP, Huang CJ, Chiu JH, Tseng LM, Huang CC. Targeted Sequencing of Taiwanese Breast Cancer with Risk Stratification by the Concurrent Genes Signature: A Feasibility Study. J Pers Med 2021; 11:jpm11070613. [PMID: 34203389 PMCID: PMC8306786 DOI: 10.3390/jpm11070613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common female malignancy in Taiwan, while conventional clinical and pathological factors fail to provide full explanation for prognostic heterogeneity. The aim of the study was to evaluate the feasibility of targeted sequencing combined with concurrent genes signature to identify somatic mutations with clinical significance. The extended concurrent genes signature was based on the coherent patterns between genomic and transcriptional alterations. Targeted sequencing of 61 Taiwanese breast cancers revealed 1036 variants, including 76 pathogenic and 545 likely pathogenic variants based on the ACMG classification. The most frequently mutated genes were NOTCH, BRCA1, AR, ERBB2, FANCA, ATM, and BRCA2 and the most common pathogenic deletions were FGFR1, ATM, and WT1, while BRCA1 (rs1799965), FGFR2 (missense), and BRCA1 (rs1799949) were recurrent pathogenic SNPs. In addition, 38 breast cancers were predicted into 12 high-risk and 26 low-risk cases based on the extended concurrent genes signature, while the pathogenic PIK3CA variant (rs121913279) was significantly mutated between groups. Two deleterious SH3GLB2 mutations were further revealed by multivariate Cox’s regression (hazard ratios: 29.4 and 16.1). In addition, we identified several significantly mutated or pathogenic variants associated with differentially expressed signature genes. The feasibility of targeted sequencing in combination with concurrent genes risk stratification was ascertained. Future study to validate clinical applicability and evaluate potential actionability for Taiwanese breast cancers should be initiated.
Collapse
Affiliation(s)
- Ching-Shui Huang
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Yi Liu
- Department of Pathology, Cathay General Hospital Sijhih, New Taipei 221, Taiwan;
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 110, Taiwan;
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan;
- National Defense Medical Center, Department of Biochemistry, Taipei 114, Taiwan
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ling-Ming Tseng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 1121, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 1121, Taiwan
- School of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Cava C, Sabetian S, Castiglioni I. Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data. ENTROPY 2021; 23:e23020225. [PMID: 33670375 PMCID: PMC7918754 DOI: 10.3390/e23020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
- Correspondence:
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 20126 Milan, Italy;
| |
Collapse
|
14
|
Mendenhall MA, Liu S, Portley MK, O'Mard D, Fattah R, Szabo R, Bugge TH, Khillan JS, Leppla SH, Moayeri M. Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat Microbiol 2020; 5:1464-1471. [PMID: 32895527 PMCID: PMC11540063 DOI: 10.1038/s41564-020-0782-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Anthrax lethal toxin (LT), produced by Bacillus anthracis, comprises a receptor-binding moiety, protective antigen and the lethal factor (LF) protease1,2. Although LF is known to cleave mitogen-activated protein kinase kinases (MEKs/MKKs) and some variants of the NLRP1 inflammasome sensor, targeting of these pathways does not explain the lethality of anthrax toxin1,2. Here we report that the regulatory subunits of phosphoinositide-3 kinase (PI3K)-p85α (PIK3R1) and p85β (PIK3R2)3,4-are substrates of LF. Cleavage of these proteins in a proline-rich region between their N-terminal Src homology and Bcr homology domains disrupts homodimer formation and impacts PI3K signalling. Mice carrying a mutated p85α that cannot be cleaved by LF show a greater resistance to anthrax toxin challenge. The LF(W271A) mutant cleaves p85α with lower efficiency and is non-toxic to mice but can regain lethality when combined with PI3K pathway inhibitors. We provide evidence that LF targets two signalling pathways that are essential for growth and metabolism and that the disabling of both pathways is likely necessary for lethal anthrax infection.
Collapse
Affiliation(s)
- Megan A Mendenhall
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shihui Liu
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Makayla K Portley
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle O'Mard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|